On isomorphism classes of C ( 2 [ 0 , α ] ) spaces

Elói Medina Galego

Fundamenta Mathematicae (2009)

  • Volume: 204, Issue: 1, page 87-95
  • ISSN: 0016-2736

Abstract

top
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2 [ 0 , α ] , the topological sums of Cantor cubes 2 , with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C ( 2 [ 0 , α ] ) spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.

How to cite

top

Elói Medina Galego. "On isomorphism classes of $C(2^{} ⊕ [0,α])$ spaces." Fundamenta Mathematicae 204.1 (2009): 87-95. <http://eudml.org/doc/282652>.

@article{ElóiMedinaGalego2009,
abstract = {We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces $2^\{\} ⊕ [0,α]$, the topological sums of Cantor cubes $2^\{\}$, with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of $C(2^\{\} ⊕ [0,α])$ spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.},
author = {Elói Medina Galego},
journal = {Fundamenta Mathematicae},
keywords = {Banach spaces of continuous functions; Cantor cube; isomorphic classification; Mazur property; sequential cardinal},
language = {eng},
number = {1},
pages = {87-95},
title = {On isomorphism classes of $C(2^\{\} ⊕ [0,α])$ spaces},
url = {http://eudml.org/doc/282652},
volume = {204},
year = {2009},
}

TY - JOUR
AU - Elói Medina Galego
TI - On isomorphism classes of $C(2^{} ⊕ [0,α])$ spaces
JO - Fundamenta Mathematicae
PY - 2009
VL - 204
IS - 1
SP - 87
EP - 95
AB - We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces $2^{} ⊕ [0,α]$, the topological sums of Cantor cubes $2^{}$, with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of $C(2^{} ⊕ [0,α])$ spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.
LA - eng
KW - Banach spaces of continuous functions; Cantor cube; isomorphic classification; Mazur property; sequential cardinal
UR - http://eudml.org/doc/282652
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.