Some combinatorics involving ξ-large sets
Teresa Bigorajska; Henryk Kotlarski
Fundamenta Mathematicae (2002)
- Volume: 175, Issue: 2, page 119-125
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topTeresa Bigorajska, and Henryk Kotlarski. "Some combinatorics involving ξ-large sets." Fundamenta Mathematicae 175.2 (2002): 119-125. <http://eudml.org/doc/282688>.
@article{TeresaBigorajska2002,
abstract = {We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.},
author = {Teresa Bigorajska, Henryk Kotlarski},
journal = {Fundamenta Mathematicae},
keywords = {Ramsey theorem for partitions},
language = {eng},
number = {2},
pages = {119-125},
title = {Some combinatorics involving ξ-large sets},
url = {http://eudml.org/doc/282688},
volume = {175},
year = {2002},
}
TY - JOUR
AU - Teresa Bigorajska
AU - Henryk Kotlarski
TI - Some combinatorics involving ξ-large sets
JO - Fundamenta Mathematicae
PY - 2002
VL - 175
IS - 2
SP - 119
EP - 125
AB - We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.
LA - eng
KW - Ramsey theorem for partitions
UR - http://eudml.org/doc/282688
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.