Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces

Peter J. Nyikos

Fundamenta Mathematicae (2003)

  • Volume: 176, Issue: 1, page 25-45
  • ISSN: 0016-2736

Abstract

top
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact subspaces in certain continuous preimages of ω₁. It also exposes (Theorem 2) the fine structure of perfect preimages of ω₁ which are T₅ and hereditarily collectionwise Hausdorff. In these theorems, "T₅ and hereditarily collectionwise Hausdorff" is weakened to "hereditarily strongly collectionwise Hausdorff." Corollaries include the consistency, modulo large cardinals, of every hereditarily strongly collectionwise Hausdorff manifold of dimension > 1 being metrizable. The concept of an alignment plays an important role in formulating several of the structure theorems.

How to cite

top

Peter J. Nyikos. "Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces." Fundamenta Mathematicae 176.1 (2003): 25-45. <http://eudml.org/doc/282789>.

@article{PeterJ2003,
abstract = {Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact subspaces in certain continuous preimages of ω₁. It also exposes (Theorem 2) the fine structure of perfect preimages of ω₁ which are T₅ and hereditarily collectionwise Hausdorff. In these theorems, "T₅ and hereditarily collectionwise Hausdorff" is weakened to "hereditarily strongly collectionwise Hausdorff." Corollaries include the consistency, modulo large cardinals, of every hereditarily strongly collectionwise Hausdorff manifold of dimension > 1 being metrizable. The concept of an alignment plays an important role in formulating several of the structure theorems.},
author = {Peter J. Nyikos},
journal = {Fundamenta Mathematicae},
keywords = {locally compact; hereditarily cwH; countably compact; hereditarily normal; copies of },
language = {eng},
number = {1},
pages = {25-45},
title = {Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces},
url = {http://eudml.org/doc/282789},
volume = {176},
year = {2003},
}

TY - JOUR
AU - Peter J. Nyikos
TI - Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces
JO - Fundamenta Mathematicae
PY - 2003
VL - 176
IS - 1
SP - 25
EP - 45
AB - Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact subspaces in certain continuous preimages of ω₁. It also exposes (Theorem 2) the fine structure of perfect preimages of ω₁ which are T₅ and hereditarily collectionwise Hausdorff. In these theorems, "T₅ and hereditarily collectionwise Hausdorff" is weakened to "hereditarily strongly collectionwise Hausdorff." Corollaries include the consistency, modulo large cardinals, of every hereditarily strongly collectionwise Hausdorff manifold of dimension > 1 being metrizable. The concept of an alignment plays an important role in formulating several of the structure theorems.
LA - eng
KW - locally compact; hereditarily cwH; countably compact; hereditarily normal; copies of
UR - http://eudml.org/doc/282789
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.