Generating varieties for the triple loop space of classical Lie groups
Fundamenta Mathematicae (2003)
- Volume: 177, Issue: 3, page 269-283
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topYasuhiko Kamiyama. "Generating varieties for the triple loop space of classical Lie groups." Fundamenta Mathematicae 177.3 (2003): 269-283. <http://eudml.org/doc/282803>.
@article{YasuhikoKamiyama2003,
abstract = {For G = SU(n), Sp(n) or Spin(n), let $C_\{G\}(SU(2))$ be the centralizer of a certain SU(2) in G. We have a natural map $J: G/C_\{G\}(SU(2)) → Ω₀³G$. For a generator α of $H⁎(G/C_\{G\}(SU(2));ℤ/2)$, we describe J⁎(α). In particular, it is proved that $J⁎: H⁎(G/C_\{G\}(SU(2));ℤ/2) → H⁎(Ω₀³G;ℤ/2)$ is injective.},
author = {Yasuhiko Kamiyama},
journal = {Fundamenta Mathematicae},
keywords = {generating variety; instantons; triple loop space},
language = {eng},
number = {3},
pages = {269-283},
title = {Generating varieties for the triple loop space of classical Lie groups},
url = {http://eudml.org/doc/282803},
volume = {177},
year = {2003},
}
TY - JOUR
AU - Yasuhiko Kamiyama
TI - Generating varieties for the triple loop space of classical Lie groups
JO - Fundamenta Mathematicae
PY - 2003
VL - 177
IS - 3
SP - 269
EP - 283
AB - For G = SU(n), Sp(n) or Spin(n), let $C_{G}(SU(2))$ be the centralizer of a certain SU(2) in G. We have a natural map $J: G/C_{G}(SU(2)) → Ω₀³G$. For a generator α of $H⁎(G/C_{G}(SU(2));ℤ/2)$, we describe J⁎(α). In particular, it is proved that $J⁎: H⁎(G/C_{G}(SU(2));ℤ/2) → H⁎(Ω₀³G;ℤ/2)$ is injective.
LA - eng
KW - generating variety; instantons; triple loop space
UR - http://eudml.org/doc/282803
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.