Generating varieties for the triple loop space of classical Lie groups

Yasuhiko Kamiyama

Fundamenta Mathematicae (2003)

  • Volume: 177, Issue: 3, page 269-283
  • ISSN: 0016-2736

Abstract

top
For G = SU(n), Sp(n) or Spin(n), let be the centralizer of a certain SU(2) in G. We have a natural map . For a generator α of , we describe J⁎(α). In particular, it is proved that is injective.

How to cite

top

Yasuhiko Kamiyama. "Generating varieties for the triple loop space of classical Lie groups." Fundamenta Mathematicae 177.3 (2003): 269-283. <http://eudml.org/doc/282803>.

@article{YasuhikoKamiyama2003,
abstract = {For G = SU(n), Sp(n) or Spin(n), let $C_\{G\}(SU(2))$ be the centralizer of a certain SU(2) in G. We have a natural map $J: G/C_\{G\}(SU(2)) → Ω₀³G$. For a generator α of $H⁎(G/C_\{G\}(SU(2));ℤ/2)$, we describe J⁎(α). In particular, it is proved that $J⁎: H⁎(G/C_\{G\}(SU(2));ℤ/2) → H⁎(Ω₀³G;ℤ/2)$ is injective.},
author = {Yasuhiko Kamiyama},
journal = {Fundamenta Mathematicae},
keywords = {generating variety; instantons; triple loop space},
language = {eng},
number = {3},
pages = {269-283},
title = {Generating varieties for the triple loop space of classical Lie groups},
url = {http://eudml.org/doc/282803},
volume = {177},
year = {2003},
}

TY - JOUR
AU - Yasuhiko Kamiyama
TI - Generating varieties for the triple loop space of classical Lie groups
JO - Fundamenta Mathematicae
PY - 2003
VL - 177
IS - 3
SP - 269
EP - 283
AB - For G = SU(n), Sp(n) or Spin(n), let $C_{G}(SU(2))$ be the centralizer of a certain SU(2) in G. We have a natural map $J: G/C_{G}(SU(2)) → Ω₀³G$. For a generator α of $H⁎(G/C_{G}(SU(2));ℤ/2)$, we describe J⁎(α). In particular, it is proved that $J⁎: H⁎(G/C_{G}(SU(2));ℤ/2) → H⁎(Ω₀³G;ℤ/2)$ is injective.
LA - eng
KW - generating variety; instantons; triple loop space
UR - http://eudml.org/doc/282803
ER -

NotesEmbed ?

top

You must be logged in to post comments.