A study of remainders of topological groups

A. V. Arhangel'skii

Fundamenta Mathematicae (2009)

  • Volume: 203, Issue: 2, page 165-178
  • ISSN: 0016-2736

Abstract

top
Some duality theorems relating properties of topological groups to properties of their remainders are established. It is shown that no Dowker space can be a remainder of a topological group. Perfect normality of a remainder of a topological group is consistently equivalent to hereditary Lindelöfness of this remainder. No L-space can be a remainder of a non-locally compact topological group. Normality is equivalent to collectionwise normality for remainders of topological groups. If a non-locally compact topological group G has a hereditarily Lindelöf remainder, then G is separable and metrizable. We also present several other criteria for a topological group G to be separable and metrizable. Two of them are of general nature and depend heavily on a new criterion for Lindelöfness of a topological group in terms of remainders. One of them generalizes a theorem of the author [Topology Appl. 150 (2005)] as follows: a topological group G is separable and metrizable if and only if some remainder of G has locally a G δ -diagonal. We also study how close are the topological properties of topological groups that have homeomorphic remainders.

How to cite

top

A. V. Arhangel'skii. "A study of remainders of topological groups." Fundamenta Mathematicae 203.2 (2009): 165-178. <http://eudml.org/doc/282804>.

@article{A2009,
abstract = {Some duality theorems relating properties of topological groups to properties of their remainders are established. It is shown that no Dowker space can be a remainder of a topological group. Perfect normality of a remainder of a topological group is consistently equivalent to hereditary Lindelöfness of this remainder. No L-space can be a remainder of a non-locally compact topological group. Normality is equivalent to collectionwise normality for remainders of topological groups. If a non-locally compact topological group G has a hereditarily Lindelöf remainder, then G is separable and metrizable. We also present several other criteria for a topological group G to be separable and metrizable. Two of them are of general nature and depend heavily on a new criterion for Lindelöfness of a topological group in terms of remainders. One of them generalizes a theorem of the author [Topology Appl. 150 (2005)] as follows: a topological group G is separable and metrizable if and only if some remainder of G has locally a $G_δ$-diagonal. We also study how close are the topological properties of topological groups that have homeomorphic remainders.},
author = {A. V. Arhangel'skii},
journal = {Fundamenta Mathematicae},
language = {eng},
number = {2},
pages = {165-178},
title = {A study of remainders of topological groups},
url = {http://eudml.org/doc/282804},
volume = {203},
year = {2009},
}

TY - JOUR
AU - A. V. Arhangel'skii
TI - A study of remainders of topological groups
JO - Fundamenta Mathematicae
PY - 2009
VL - 203
IS - 2
SP - 165
EP - 178
AB - Some duality theorems relating properties of topological groups to properties of their remainders are established. It is shown that no Dowker space can be a remainder of a topological group. Perfect normality of a remainder of a topological group is consistently equivalent to hereditary Lindelöfness of this remainder. No L-space can be a remainder of a non-locally compact topological group. Normality is equivalent to collectionwise normality for remainders of topological groups. If a non-locally compact topological group G has a hereditarily Lindelöf remainder, then G is separable and metrizable. We also present several other criteria for a topological group G to be separable and metrizable. Two of them are of general nature and depend heavily on a new criterion for Lindelöfness of a topological group in terms of remainders. One of them generalizes a theorem of the author [Topology Appl. 150 (2005)] as follows: a topological group G is separable and metrizable if and only if some remainder of G has locally a $G_δ$-diagonal. We also study how close are the topological properties of topological groups that have homeomorphic remainders.
LA - eng
UR - http://eudml.org/doc/282804
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.