Hurewicz-Serre theorem in extension theory
M. Cencelj; J. Dydak; A. Mitra; A. Vavpetič
Fundamenta Mathematicae (2008)
- Volume: 198, Issue: 2, page 113-123
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topM. Cencelj, et al. "Hurewicz-Serre theorem in extension theory." Fundamenta Mathematicae 198.2 (2008): 113-123. <http://eudml.org/doc/282814>.
@article{M2008,
abstract = {The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper:
Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that $XτK(H_\{k\}(L),k)$ for all k ≥ 1, then $XτK(π_\{k\}(F),k)$ and $XτK(π_\{k\}(L),k)$ for all k ≥ $.
$Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose L is a nilpotent CW complex. If XτSP(L), then XτL in the following cases:
(a) H₁(L) is finitely generated.
(b) H₁(L) is a torsion group.},
author = {M. Cencelj, J. Dydak, A. Mitra, A. Vavpetič},
journal = {Fundamenta Mathematicae},
keywords = {extension dimension; cohomological dimension; absolute extensor; nilpotent groups},
language = {eng},
number = {2},
pages = {113-123},
title = {Hurewicz-Serre theorem in extension theory},
url = {http://eudml.org/doc/282814},
volume = {198},
year = {2008},
}
TY - JOUR
AU - M. Cencelj
AU - J. Dydak
AU - A. Mitra
AU - A. Vavpetič
TI - Hurewicz-Serre theorem in extension theory
JO - Fundamenta Mathematicae
PY - 2008
VL - 198
IS - 2
SP - 113
EP - 123
AB - The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper:
Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that $XτK(H_{k}(L),k)$ for all k ≥ 1, then $XτK(π_{k}(F),k)$ and $XτK(π_{k}(L),k)$ for all k ≥ $.
$Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose L is a nilpotent CW complex. If XτSP(L), then XτL in the following cases:
(a) H₁(L) is finitely generated.
(b) H₁(L) is a torsion group.
LA - eng
KW - extension dimension; cohomological dimension; absolute extensor; nilpotent groups
UR - http://eudml.org/doc/282814
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.