Transference of weak type bounds of multiparameter ergodic and geometric maximal operators
Paul Hagelstein; Alexander Stokolos
Fundamenta Mathematicae (2012)
- Volume: 218, Issue: 3, page 269-283
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topPaul Hagelstein, and Alexander Stokolos. "Transference of weak type bounds of multiparameter ergodic and geometric maximal operators." Fundamenta Mathematicae 218.3 (2012): 269-283. <http://eudml.org/doc/282848>.
@article{PaulHagelstein2012,
abstract = {Let $U₁, ..., U_\{d\}$ be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of $ℤ₊^\{d\}$ and the associated collection of rectangular parallelepipeds in $ℝ^d$ with sides parallel to the axes and dimensions of the form $n₁ × ⋯ × n_d$ with $(n₁,...,n_d) ∈ Γ.$ The associated multiparameter geometric and ergodic maximal operators $M_\{\}$ and $M_\{Γ\}$ are defined respectively on $L¹(ℝ^\{d\})$ and L¹(Ω) by
$M_\{\}g(x) = sup_\{x ∈ R ∈ \} 1/|R| ∫_\{R\}|g(y)|dy$
and
$M_\{Γ\}f(ω) = sup_\{(n₁, ..., n_\{d\}) ∈ Γ\} 1/\{n₁⋯ n_\{d\}\} ∑_\{j₁=0\}^\{n₁-1\} ⋯ ∑_\{j_\{d\}=0\}^\{n_\{d\}-1\} |f(U₁^\{j₁\} ⋯ U_\{d\}^\{j_\{d\}\}ω)|$.
Given a Young function Φ, it is shown that $M_\{\}$ satisfies the weak type estimate
$|\{x ∈ ℝ^d : M_\{\}g(x) > α\}| ≤ C_\{\}∫_\{ℝ^d\} Φ(c_\{\}|g|/α)$
for a pair of positive constants $C_\{\}$, $c_\{\}$ if and only if $M_\{Γ\}$ satisfies a corresponding weak type estimate
$μ\{ω ∈ Ω : M_\{Γ\} f(ω) > α\} ≤ C_\{Γ\}∫_\{Ω\} Φ(c_\{Γ\}|f|/α)$.
for a pair of positive constants $C_\{Γ\}$, $c_\{Γ\}$. Applications of this transference principle regarding the a.e. convergence of multiparameter ergodic averages associated to rare bases are given.},
author = {Paul Hagelstein, Alexander Stokolos},
journal = {Fundamenta Mathematicae},
keywords = {ergodic theory; maximal functions; transference},
language = {eng},
number = {3},
pages = {269-283},
title = {Transference of weak type bounds of multiparameter ergodic and geometric maximal operators},
url = {http://eudml.org/doc/282848},
volume = {218},
year = {2012},
}
TY - JOUR
AU - Paul Hagelstein
AU - Alexander Stokolos
TI - Transference of weak type bounds of multiparameter ergodic and geometric maximal operators
JO - Fundamenta Mathematicae
PY - 2012
VL - 218
IS - 3
SP - 269
EP - 283
AB - Let $U₁, ..., U_{d}$ be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of $ℤ₊^{d}$ and the associated collection of rectangular parallelepipeds in $ℝ^d$ with sides parallel to the axes and dimensions of the form $n₁ × ⋯ × n_d$ with $(n₁,...,n_d) ∈ Γ.$ The associated multiparameter geometric and ergodic maximal operators $M_{}$ and $M_{Γ}$ are defined respectively on $L¹(ℝ^{d})$ and L¹(Ω) by
$M_{}g(x) = sup_{x ∈ R ∈ } 1/|R| ∫_{R}|g(y)|dy$
and
$M_{Γ}f(ω) = sup_{(n₁, ..., n_{d}) ∈ Γ} 1/{n₁⋯ n_{d}} ∑_{j₁=0}^{n₁-1} ⋯ ∑_{j_{d}=0}^{n_{d}-1} |f(U₁^{j₁} ⋯ U_{d}^{j_{d}}ω)|$.
Given a Young function Φ, it is shown that $M_{}$ satisfies the weak type estimate
$|{x ∈ ℝ^d : M_{}g(x) > α}| ≤ C_{}∫_{ℝ^d} Φ(c_{}|g|/α)$
for a pair of positive constants $C_{}$, $c_{}$ if and only if $M_{Γ}$ satisfies a corresponding weak type estimate
$μ{ω ∈ Ω : M_{Γ} f(ω) > α} ≤ C_{Γ}∫_{Ω} Φ(c_{Γ}|f|/α)$.
for a pair of positive constants $C_{Γ}$, $c_{Γ}$. Applications of this transference principle regarding the a.e. convergence of multiparameter ergodic averages associated to rare bases are given.
LA - eng
KW - ergodic theory; maximal functions; transference
UR - http://eudml.org/doc/282848
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.