top
We give a graphical calculus for a monoidal DG category ℐ whose Grothendieck group is isomorphic to the ring ℤ[√(-1)]. We construct a categorical action of ℐ which lifts the action of ℤ[√(-1)] on ℤ².
Yin Tian. "A categorification of the square root of -1." Fundamenta Mathematicae 232.1 (2016): 89-98. <http://eudml.org/doc/282897>.
@article{YinTian2016, abstract = {We give a graphical calculus for a monoidal DG category ℐ whose Grothendieck group is isomorphic to the ring ℤ[√(-1)]. We construct a categorical action of ℐ which lifts the action of ℤ[√(-1)] on ℤ².}, author = {Yin Tian}, journal = {Fundamenta Mathematicae}, keywords = {categorification; monoidal DG category; root of unity; quiver algebra}, language = {eng}, number = {1}, pages = {89-98}, title = {A categorification of the square root of -1}, url = {http://eudml.org/doc/282897}, volume = {232}, year = {2016}, }
TY - JOUR AU - Yin Tian TI - A categorification of the square root of -1 JO - Fundamenta Mathematicae PY - 2016 VL - 232 IS - 1 SP - 89 EP - 98 AB - We give a graphical calculus for a monoidal DG category ℐ whose Grothendieck group is isomorphic to the ring ℤ[√(-1)]. We construct a categorical action of ℐ which lifts the action of ℤ[√(-1)] on ℤ². LA - eng KW - categorification; monoidal DG category; root of unity; quiver algebra UR - http://eudml.org/doc/282897 ER -