Classification of homotopy classes of equivariant gradient maps

E. N. Dancer; K. Gęba; S. M. Rybicki

Fundamenta Mathematicae (2005)

  • Volume: 185, Issue: 1, page 1-18
  • ISSN: 0016-2736

Abstract

top
Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that ( F ) - 1 ( 0 ) S ( V ) = . We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).

How to cite

top

E. N. Dancer, K. Gęba, and S. M. Rybicki. "Classification of homotopy classes of equivariant gradient maps." Fundamenta Mathematicae 185.1 (2005): 1-18. <http://eudml.org/doc/283144>.

@article{E2005,
abstract = {Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that $(∇F)^\{-1\}(0) ∩ S(V) = ∅$. We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).},
author = {E. N. Dancer, K. Gęba, S. M. Rybicki},
journal = {Fundamenta Mathematicae},
keywords = {equivariant degree; gradient equivariant homotopy classes; Burnside ring; Riemannian manifolds; finite-dimensional orthogonal representation; compact Lie groups},
language = {eng},
number = {1},
pages = {1-18},
title = {Classification of homotopy classes of equivariant gradient maps},
url = {http://eudml.org/doc/283144},
volume = {185},
year = {2005},
}

TY - JOUR
AU - E. N. Dancer
AU - K. Gęba
AU - S. M. Rybicki
TI - Classification of homotopy classes of equivariant gradient maps
JO - Fundamenta Mathematicae
PY - 2005
VL - 185
IS - 1
SP - 1
EP - 18
AB - Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that $(∇F)^{-1}(0) ∩ S(V) = ∅$. We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).
LA - eng
KW - equivariant degree; gradient equivariant homotopy classes; Burnside ring; Riemannian manifolds; finite-dimensional orthogonal representation; compact Lie groups
UR - http://eudml.org/doc/283144
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.