The weak extension property and finite axiomatizability for quasivarieties

Wiesław Dziobiak; Miklós Maróti; Ralph McKenzie; Anvar Nurakunov

Fundamenta Mathematicae (2009)

  • Volume: 202, Issue: 3, page 199-223
  • ISSN: 0016-2736

Abstract

top
We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results proved by M. Maróti and R. McKenzie [Studia Logica 78 (2004)] we prove that a finitely generated quasivariety ℒ of finite signature is finitely axiomatizable provided that ℒ satisfies RSD(∧), or that ℒ is relatively congruence modular and is included in a residually small congruence modular variety. This yields as a corollary the full version of R. Willard's theorem for quasivarieties and partially proves a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type characterization for RSD(∧) quasivarieties and supply an algorithm for recognizing when the quasivariety generated by a finite set of finite algebras satisfies RSD(∧).

How to cite

top

Wiesław Dziobiak, et al. "The weak extension property and finite axiomatizability for quasivarieties." Fundamenta Mathematicae 202.3 (2009): 199-223. <http://eudml.org/doc/283240>.

@article{WiesławDziobiak2009,
abstract = {We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results proved by M. Maróti and R. McKenzie [Studia Logica 78 (2004)] we prove that a finitely generated quasivariety ℒ of finite signature is finitely axiomatizable provided that ℒ satisfies RSD(∧), or that ℒ is relatively congruence modular and is included in a residually small congruence modular variety. This yields as a corollary the full version of R. Willard's theorem for quasivarieties and partially proves a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type characterization for RSD(∧) quasivarieties and supply an algorithm for recognizing when the quasivariety generated by a finite set of finite algebras satisfies RSD(∧).},
author = {Wiesław Dziobiak, Miklós Maróti, Ralph McKenzie, Anvar Nurakunov},
journal = {Fundamenta Mathematicae},
keywords = {quasivariety; finite axiomatizability; congruence properties},
language = {eng},
number = {3},
pages = {199-223},
title = {The weak extension property and finite axiomatizability for quasivarieties},
url = {http://eudml.org/doc/283240},
volume = {202},
year = {2009},
}

TY - JOUR
AU - Wiesław Dziobiak
AU - Miklós Maróti
AU - Ralph McKenzie
AU - Anvar Nurakunov
TI - The weak extension property and finite axiomatizability for quasivarieties
JO - Fundamenta Mathematicae
PY - 2009
VL - 202
IS - 3
SP - 199
EP - 223
AB - We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results proved by M. Maróti and R. McKenzie [Studia Logica 78 (2004)] we prove that a finitely generated quasivariety ℒ of finite signature is finitely axiomatizable provided that ℒ satisfies RSD(∧), or that ℒ is relatively congruence modular and is included in a residually small congruence modular variety. This yields as a corollary the full version of R. Willard's theorem for quasivarieties and partially proves a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type characterization for RSD(∧) quasivarieties and supply an algorithm for recognizing when the quasivariety generated by a finite set of finite algebras satisfies RSD(∧).
LA - eng
KW - quasivariety; finite axiomatizability; congruence properties
UR - http://eudml.org/doc/283240
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.