On Bather's stochastic approximation algorithm

Rainer Schwabe

Kybernetika (1994)

  • Volume: 30, Issue: 3, page 301-306
  • ISSN: 0023-5954

How to cite

top

Schwabe, Rainer. "On Bather's stochastic approximation algorithm." Kybernetika 30.3 (1994): 301-306. <http://eudml.org/doc/28325>.

@article{Schwabe1994,
author = {Schwabe, Rainer},
journal = {Kybernetika},
keywords = {root; regression function; rate of convergence},
language = {eng},
number = {3},
pages = {301-306},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On Bather's stochastic approximation algorithm},
url = {http://eudml.org/doc/28325},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Schwabe, Rainer
TI - On Bather's stochastic approximation algorithm
JO - Kybernetika
PY - 1994
PB - Institute of Information Theory and Automation AS CR
VL - 30
IS - 3
SP - 301
EP - 306
LA - eng
KW - root; regression function; rate of convergence
UR - http://eudml.org/doc/28325
ER -

References

top
  1. J. A. Bather, Stochastic approximation: A generalisation of the Robbins-Monro procedure, In: Proc. Fourth Prague Symp. Asymptotic Statistics, Charles Univ. Prague, August 29-September 2, 1988 (P. Mandl and M. Hušková, eds.), Charles Univ., Prague 1989, pp. 13-27. (1988) MR1051424
  2. J. R. Blum, Approximation methods which converge with probability one, Ann. Math. Statist. 25 (1954), 382-386. (1954) Zbl0055.37806MR0062399
  3. K. L. Chung, On a stochastic approximation method, Ann. Math. Statist. 25 (1954), 463-483. (1954) Zbl0059.13203MR0064365
  4. V. Fabian, On asymptotic normality in stochastic approximation, Ann. Math. Statist. 39 (1968), 1327-1332. (1968) Zbl0176.48402MR0231429
  5. G. Kersting, Almost sure approximation of the Robbins-Monro process by sums of independent random variables, Ann. Probab. 5 (1977), 954-965. (1977) Zbl0374.62082MR0494741
  6. L. Ljung, Strong convergence of a stochastic approximation algorithm, Ann. Statist. 6 (1978), 680-696. (1978) Zbl0402.62060MR0464516
  7. B. T. Polyak, New method of stochastic approximation type, Automat. Remote Control 51 (1990), 937-946. (1990) Zbl0737.93080MR1071220
  8. H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951), 400-407. (1951) Zbl0054.05901MR0042668
  9. D. Ruppert, Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise, Ann. Probab. 10 (1982), 178-187. (1982) Zbl0485.62083MR0637384
  10. D. Ruppert, Efficient Estimators from a Slowly Convergent Robbins-Monro Process, Technical Report No. 781, School of Operations Research and Industrial Engineering, Cornell Univ. Ithaca 1988. (1988) 
  11. D. Ruppert, Stochastic approximation, In: Handbook of Sequential Analysis. (B. K. Ghosh and P. K. Sen, eds.), Marcel Dekker, New York 1991, pp. 503-529. (1991) MR1174318
  12. J. Sacks, Asymptotic distribution of stochastic approximation procedures, Ann. Math. Statist. 29 (1958), 373-405. (1958) Zbl0229.62010MR0098427
  13. R. Schwabe, Strong representation of an adaptive stochastic approximation procedure, Stochastic Process. Appl. 23 (1986), 115-130. (1986) Zbl0614.62107MR0866290
  14. R. Schwabe, Stability results for smoothed stochastic approximation procedures, Z. Angew. Math. Mech. 73 (1993), 639-643. (1993) Zbl0793.65110MR1237850
  15. J. H. Venter, An extension of the Robbins-Monro procedure, Ann. Math. Statist. 38 (1967), 181-190. (1967) Zbl0158.36901MR0205396
  16. H. Walk, Foundations of stochastic approximation, In: Stochastic Approximation and Optimization of Random Systems, DMV Seminar Blauberen, May 28-June 4, 1989 (L. Jung, G. Pflug and H. Walk, eds.), DMV Seminar, Vol. 17, Birkhäuser, Basel 1992, pp. 1-51. (1989) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.