On the Hausdorff dimension of ultrametric subsets in ℝⁿ
James R. Lee; Manor Mendel; Mohammad Moharrami
Fundamenta Mathematicae (2012)
- Volume: 218, Issue: 3, page 285-290
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topJames R. Lee, Manor Mendel, and Mohammad Moharrami. "On the Hausdorff dimension of ultrametric subsets in ℝⁿ." Fundamenta Mathematicae 218.3 (2012): 285-290. <http://eudml.org/doc/283299>.
@article{JamesR2012,
abstract = {For every ε > 0, any subset of ℝⁿ with Hausdorff dimension larger than (1-ε)n must have ultrametric distortion larger than 1/(4ε).},
author = {James R. Lee, Manor Mendel, Mohammad Moharrami},
journal = {Fundamenta Mathematicae},
keywords = {bi-Lipschitz embeddings; Hausdorff dimension; Assouad dimension; ultrametrics},
language = {eng},
number = {3},
pages = {285-290},
title = {On the Hausdorff dimension of ultrametric subsets in ℝⁿ},
url = {http://eudml.org/doc/283299},
volume = {218},
year = {2012},
}
TY - JOUR
AU - James R. Lee
AU - Manor Mendel
AU - Mohammad Moharrami
TI - On the Hausdorff dimension of ultrametric subsets in ℝⁿ
JO - Fundamenta Mathematicae
PY - 2012
VL - 218
IS - 3
SP - 285
EP - 290
AB - For every ε > 0, any subset of ℝⁿ with Hausdorff dimension larger than (1-ε)n must have ultrametric distortion larger than 1/(4ε).
LA - eng
KW - bi-Lipschitz embeddings; Hausdorff dimension; Assouad dimension; ultrametrics
UR - http://eudml.org/doc/283299
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.