New rotational integrals in space forms, with an application to surface area estimation
Ximo Gual-Arnau; Luis M. Cruz-Orive
Applications of Mathematics (2016)
- Volume: 61, Issue: 4, page 489-501
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGual-Arnau, Ximo, and Cruz-Orive, Luis M.. "New rotational integrals in space forms, with an application to surface area estimation." Applications of Mathematics 61.4 (2016): 489-501. <http://eudml.org/doc/283399>.
@article{Gual2016,
abstract = {A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.},
author = {Gual-Arnau, Ximo, Cruz-Orive, Luis M.},
journal = {Applications of Mathematics},
keywords = {critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation; critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation},
language = {eng},
number = {4},
pages = {489-501},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New rotational integrals in space forms, with an application to surface area estimation},
url = {http://eudml.org/doc/283399},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Gual-Arnau, Ximo
AU - Cruz-Orive, Luis M.
TI - New rotational integrals in space forms, with an application to surface area estimation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 489
EP - 501
AB - A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.
LA - eng
KW - critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation; critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation
UR - http://eudml.org/doc/283399
ER -
References
top- Auneau, J., Jensen, E. B. V., 10.1016/j.aam.2009.11.010, Adv. Appl. Math. 45 (2010), 1-11. (2010) Zbl1202.60018MR2628780DOI10.1016/j.aam.2009.11.010
- Blaschke, W., Integralgeometrie 1, Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935). (1935)
- Cartan, E., Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé, Bull. Soc. Math. Fr. 24 (1896), 140-177 French. (1896)
- Crofton, M. W., 10.1098/rstl.1868.0008, Philos. Trans. R. Soc. Lond. 158 (1868), 181-199. (1868) DOI10.1098/rstl.1868.0008
- Cruz-Orive, L. M., 10.1111/j.1365-2818.2005.01489.x, J. Microsc. 219 (2005), 18-28. (2005) MR2149754DOI10.1111/j.1365-2818.2005.01489.x
- Dvořák, J., Jensen, E. B., 10.1111/jmi.12030, J. Microsc. 250 (2013), 142-57. (2013) DOI10.1111/jmi.12030
- Gual-Arnau, X., Cruz-Orive, L. M., 10.1016/j.difgeo.2008.06.013, Differ. Geom. Appl. 27 (2009), 124-128. (2009) Zbl1168.53039MR2488995DOI10.1016/j.difgeo.2008.06.013
- Gual-Arnau, X., Cruz-Orive, L. M., Nu{ñ}o-Ballesteros, J. J., 10.1016/j.aam.2009.09.003, Adv. Appl. Math. 44 (2010), 298-308. (2010) Zbl1188.53089MR2593313DOI10.1016/j.aam.2009.09.003
- Gutkin, E., 10.1016/j.geomphys.2011.06.013, J. Geom. Phys. 61 (2011), 2147-2161. (2011) Zbl1231.53005MR2827115DOI10.1016/j.geomphys.2011.06.013
- Hirsch, M. W., Differential Topology. Corrected reprint of the 1976 original, Graduate Texts in Mathematics 33 Springer, New York (1994). (1994) MR1336822
- Petkantschin, B., 10.1007/BF02940729, Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German. (1936) DOI10.1007/BF02940729
- Ren, D.-l., Topics in Integral Geometry, Series in Pure Mathematics 19 World Scientific, Singapore (1994). (1994) Zbl0842.53001MR1336595
- Santal{ó}, L. A., Integral Geometry and Geometric Probability, Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). (2004) Zbl1116.53050MR2162874
- Schneider, R., Weil, W., Stochastic and Integral Geometry, Probability and Its Applications Springer, Berlin (2008). (2008) Zbl1175.60003MR2455326
- Thórisdóttir, Ó., Kiderlen, M., 10.1016/j.aam.2014.02.003, Adv. Appl. Math. 58 (2014), 63-87. (2014) Zbl1358.52009MR3213744DOI10.1016/j.aam.2014.02.003
- Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M., 10.1111/jmi.12136, J. Micrsoc. 255 (2014), 49-64. (2014) DOI10.1111/jmi.12136
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.