New rotational integrals in space forms, with an application to surface area estimation

Ximo Gual-Arnau; Luis M. Cruz-Orive

Applications of Mathematics (2016)

  • Volume: 61, Issue: 4, page 489-501
  • ISSN: 0862-7940

Abstract

top
A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.

How to cite

top

Gual-Arnau, Ximo, and Cruz-Orive, Luis M.. "New rotational integrals in space forms, with an application to surface area estimation." Applications of Mathematics 61.4 (2016): 489-501. <http://eudml.org/doc/283399>.

@article{Gual2016,
abstract = {A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.},
author = {Gual-Arnau, Ximo, Cruz-Orive, Luis M.},
journal = {Applications of Mathematics},
keywords = {critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation; critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation},
language = {eng},
number = {4},
pages = {489-501},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New rotational integrals in space forms, with an application to surface area estimation},
url = {http://eudml.org/doc/283399},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Gual-Arnau, Ximo
AU - Cruz-Orive, Luis M.
TI - New rotational integrals in space forms, with an application to surface area estimation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 489
EP - 501
AB - A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.
LA - eng
KW - critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation; critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation
UR - http://eudml.org/doc/283399
ER -

References

top
  1. Auneau, J., Jensen, E. B. V., 10.1016/j.aam.2009.11.010, Adv. Appl. Math. 45 (2010), 1-11. (2010) Zbl1202.60018MR2628780DOI10.1016/j.aam.2009.11.010
  2. Blaschke, W., Integralgeometrie 1, Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935). (1935) 
  3. Cartan, E., Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé, Bull. Soc. Math. Fr. 24 (1896), 140-177 French. (1896) 
  4. Crofton, M. W., 10.1098/rstl.1868.0008, Philos. Trans. R. Soc. Lond. 158 (1868), 181-199. (1868) DOI10.1098/rstl.1868.0008
  5. Cruz-Orive, L. M., 10.1111/j.1365-2818.2005.01489.x, J. Microsc. 219 (2005), 18-28. (2005) MR2149754DOI10.1111/j.1365-2818.2005.01489.x
  6. Dvořák, J., Jensen, E. B., 10.1111/jmi.12030, J. Microsc. 250 (2013), 142-57. (2013) DOI10.1111/jmi.12030
  7. Gual-Arnau, X., Cruz-Orive, L. M., 10.1016/j.difgeo.2008.06.013, Differ. Geom. Appl. 27 (2009), 124-128. (2009) Zbl1168.53039MR2488995DOI10.1016/j.difgeo.2008.06.013
  8. Gual-Arnau, X., Cruz-Orive, L. M., Nu{ñ}o-Ballesteros, J. J., 10.1016/j.aam.2009.09.003, Adv. Appl. Math. 44 (2010), 298-308. (2010) Zbl1188.53089MR2593313DOI10.1016/j.aam.2009.09.003
  9. Gutkin, E., 10.1016/j.geomphys.2011.06.013, J. Geom. Phys. 61 (2011), 2147-2161. (2011) Zbl1231.53005MR2827115DOI10.1016/j.geomphys.2011.06.013
  10. Hirsch, M. W., Differential Topology. Corrected reprint of the 1976 original, Graduate Texts in Mathematics 33 Springer, New York (1994). (1994) MR1336822
  11. Petkantschin, B., 10.1007/BF02940729, Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German. (1936) DOI10.1007/BF02940729
  12. Ren, D.-l., Topics in Integral Geometry, Series in Pure Mathematics 19 World Scientific, Singapore (1994). (1994) Zbl0842.53001MR1336595
  13. Santal{ó}, L. A., Integral Geometry and Geometric Probability, Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). (2004) Zbl1116.53050MR2162874
  14. Schneider, R., Weil, W., Stochastic and Integral Geometry, Probability and Its Applications Springer, Berlin (2008). (2008) Zbl1175.60003MR2455326
  15. Thórisdóttir, Ó., Kiderlen, M., 10.1016/j.aam.2014.02.003, Adv. Appl. Math. 58 (2014), 63-87. (2014) Zbl1358.52009MR3213744DOI10.1016/j.aam.2014.02.003
  16. Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M., 10.1111/jmi.12136, J. Micrsoc. 255 (2014), 49-64. (2014) DOI10.1111/jmi.12136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.