On the strong Brillinger-mixing property of -determinantal point processes and some applications
Applications of Mathematics (2016)
- Volume: 61, Issue: 4, page 443-461
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHeinrich, Lothar. "On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications." Applications of Mathematics 61.4 (2016): 443-461. <http://eudml.org/doc/283407>.
@article{Heinrich2016,
abstract = {First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function $C(x,y)$ defining an $\{\alpha \}$-determinantal point process (DPP). Assuming absolute integrability of the function $C_0(x) = C(o,x)$, we show that a stationary $\{\alpha \}$-DPP with kernel function $C_0(x)$ is “strongly” Brillinger-mixing, implying, among others, that its tail-$\sigma $-field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications to statistical second-order analysis of $\{\alpha \}$-DPPs.},
author = {Heinrich, Lothar},
journal = {Applications of Mathematics},
keywords = {determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test; determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test},
language = {eng},
number = {4},
pages = {443-461},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the strong Brillinger-mixing property of $\{\alpha \}$-determinantal point processes and some applications},
url = {http://eudml.org/doc/283407},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Heinrich, Lothar
TI - On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 443
EP - 461
AB - First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function $C(x,y)$ defining an ${\alpha }$-determinantal point process (DPP). Assuming absolute integrability of the function $C_0(x) = C(o,x)$, we show that a stationary ${\alpha }$-DPP with kernel function $C_0(x)$ is “strongly” Brillinger-mixing, implying, among others, that its tail-$\sigma $-field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications to statistical second-order analysis of ${\alpha }$-DPPs.
LA - eng
KW - determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test; determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test
UR - http://eudml.org/doc/283407
ER -
References
top- Biscio, C. A. N., Lavancier, F., 10.1214/16-EJS1116, Electron. J. Stat. (electronic only) 10 582-607 (2016), arXiv: 1507.06506v1 [math ST] (2015). (2015) MR3471989DOI10.1214/16-EJS1116
- Camilier, I., Decreusefond, L., 10.1016/j.jfa.2010.01.007, J. Funct. Anal. 259 (2010), 268-300. (2010) Zbl1203.60050MR2610387DOI10.1016/j.jfa.2010.01.007
- Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, Probability and Its Applications Springer, New York (2003). (2003) Zbl1026.60061MR1950431
- Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, Probability and Its Applications Springer, New York (2008). (2008) Zbl1159.60003MR2371524
- Georgii, H.-O., Yoo, H. J., 10.1007/s10955-004-8777-5, J. Stat. Phys. 118 (2005), 55-84. (2005) Zbl1130.82016MR2122549DOI10.1007/s10955-004-8777-5
- Heinrich, L., 10.1080/02331888808802075, Statistics 19 (1988), 87-106. (1988) Zbl0666.62032MR0921628DOI10.1080/02331888808802075
- Heinrich, L., 10.1007/s10986-015-9266-z, Lith. Math. J. 55 (2015), 72-90. (2015) Zbl1319.60068MR3323283DOI10.1007/s10986-015-9266-z
- Heinrich, L., On the Brillinger-mixing property of stationary point processes, Submitted (2015), 12 pages.
- Heinrich, L., Klein, S., 10.1524/strm.2011.1094, Stat. Risk Model. 28 (2011), 359-387. (2011) Zbl1277.60085MR2877571DOI10.1524/strm.2011.1094
- Heinrich, L., Klein, S., 10.1007/s11203-014-9094-5, Stat. Inference Stoch. Process. 17 (2014), 121-138. (2014) Zbl1306.60008MR3219525DOI10.1007/s11203-014-9094-5
- Heinrich, L., Prokešová, M., 10.1007/s11009-008-9113-3, Methodol. Comput. Appl. Probab. 12 (2010), 451-471. (2010) Zbl1197.62122MR2665270DOI10.1007/s11009-008-9113-3
- Heinrich, L., Schmidt, V., 10.1017/S0001867800015378, Adv. Appl. Probab. 17 (1985), 709-730. (1985) Zbl0609.60036MR0809427DOI10.1017/S0001867800015378
- Hough, J. B., Krishnapur, M., Peres, Y., Virág, B., Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series 51 American Mathematical Society, Providence (2009). (2009) Zbl1190.60038MR2552864
- Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns, Statistics in Practice John Wiley & Sons, Chichester (2008). (2008) Zbl1197.62135MR2384630
- Jolivet, E., Central limit theorem and convergence of empirical processes for stationary point processes, Point Processes and Queuing Problems, Keszthely, 1978 Colloq. Math. Soc. János Bolyai 24 North-Holland, Amsterdam (1981), 117-161. (1981) Zbl0474.60040MR0617406
- Karr, A. F., 10.1007/BF01845639, Probab. Theory Relat. Fields 74 (1987), 55-69. (1987) MR0863718DOI10.1007/BF01845639
- Karr, A. F., Point Processes and Their Statistical Inference, Probability: Pure and Applied 7 Marcel Dekker, New York (1991). (1991) Zbl0733.62088MR1113698
- Lavancier, F., Møller, J., Rubak, E., 10.1111/rssb.12096, J. R. Stat. Soc., Ser. B, Stat. Methodol. 77 (2015), 853-877 arXiv: 1205.4818v1-v5 [math ST] (2012-2014). (2012) MR3382600DOI10.1111/rssb.12096
- Lenard, A., 10.1007/BF00251602, Arch. Rational Mech. Anal. 59 (1975), 241-256. (1975) MR0391831DOI10.1007/BF00251602
- Leonov, V. P., Shiryaev, A. N., On a method of calculation of semi-invariants, Theory Probab. Appl. 4 319-329 (1960), translation from Teor. Veroyatn. Primen. 4 342-355 (1959), Russian 342-355. (1959) Zbl0087.33701MR0123345
- Macchi, O., 10.1017/S0001867800040313, Adv. Appl. Probab. 7 (1975), 83-122. (1975) Zbl0366.60081MR0380979DOI10.1017/S0001867800040313
- Press, S. J., Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference, Robert E. Krieger Publishing Company, Malabar (1982). (1982) Zbl0519.62041
- Rao, A. R., Bhimasankaram, P., Linear Algebra, Texts and Readings in Mathematics 19 Hindustan Book Agency, New Delhi (2000). (2000) Zbl0982.15001MR1781860
- Soshnikov, A., 10.1070/RM2000v055n05ABEH000321, Russ. Math. Surv. 55 923-975 (2000), translation from Usp. Mat. Nauk 55 107-160 (2000), Russian. (2000) Zbl0991.60038MR1799012DOI10.1070/RM2000v055n05ABEH000321
- Soshnikov, A., 10.1214/aop/1020107764, Ann. Probab. 30 (2002), 171-187. (2002) Zbl1033.60063MR1894104DOI10.1214/aop/1020107764
- Statulevičius, V. A., 10.1007/BF00537136, Z. Wahrscheinlichkeitstheorie Verw. Geb. 6 (1966), 133-144. (1966) Zbl0158.36207MR0221560DOI10.1007/BF00537136
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.