On sums of powers of the positive integers
Colloquium Mathematicae (2013)
- Volume: 132, Issue: 2, page 211-220
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topA. Schinzel. "On sums of powers of the positive integers." Colloquium Mathematicae 132.2 (2013): 211-220. <http://eudml.org/doc/283472>.
@article{A2013,
abstract = {The pairs (k,m) are studied such that for every positive integer n we have $1^\{k\} + 2^\{k\} + ⋯ + n^\{k\} | 1^\{km\} + 2^\{km\} + ⋯ + n^\{km\}$.},
author = {A. Schinzel},
journal = {Colloquium Mathematicae},
keywords = {Bernoulli numbers; Bernoulli poynomials},
language = {eng},
number = {2},
pages = {211-220},
title = {On sums of powers of the positive integers},
url = {http://eudml.org/doc/283472},
volume = {132},
year = {2013},
}
TY - JOUR
AU - A. Schinzel
TI - On sums of powers of the positive integers
JO - Colloquium Mathematicae
PY - 2013
VL - 132
IS - 2
SP - 211
EP - 220
AB - The pairs (k,m) are studied such that for every positive integer n we have $1^{k} + 2^{k} + ⋯ + n^{k} | 1^{km} + 2^{km} + ⋯ + n^{km}$.
LA - eng
KW - Bernoulli numbers; Bernoulli poynomials
UR - http://eudml.org/doc/283472
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.