Optimal embeddings of generalized homogeneous Sobolev spaces
Irshaad Ahmed; Georgi Eremiev Karadzhov
Colloquium Mathematicae (2011)
- Volume: 123, Issue: 1, page 1-20
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topIrshaad Ahmed, and Georgi Eremiev Karadzhov. "Optimal embeddings of generalized homogeneous Sobolev spaces." Colloquium Mathematicae 123.1 (2011): 1-20. <http://eudml.org/doc/283500>.
@article{IrshaadAhmed2011,
abstract = {We prove optimal embeddings of homogeneous Sobolev spaces built over function spaces in ℝⁿ with K-monotone and rearrangement invariant norm into other rearrangement invariant function spaces. The investigation is based on pointwise and integral estimates of the rearrangement or the oscillation of the rearrangement of f in terms of the rearrangement of the derivatives of f.},
author = {Irshaad Ahmed, Georgi Eremiev Karadzhov},
journal = {Colloquium Mathematicae},
keywords = {Sobolev homogeneous spaces; optimal embeddings; rearrangement invariant spaces},
language = {eng},
number = {1},
pages = {1-20},
title = {Optimal embeddings of generalized homogeneous Sobolev spaces},
url = {http://eudml.org/doc/283500},
volume = {123},
year = {2011},
}
TY - JOUR
AU - Irshaad Ahmed
AU - Georgi Eremiev Karadzhov
TI - Optimal embeddings of generalized homogeneous Sobolev spaces
JO - Colloquium Mathematicae
PY - 2011
VL - 123
IS - 1
SP - 1
EP - 20
AB - We prove optimal embeddings of homogeneous Sobolev spaces built over function spaces in ℝⁿ with K-monotone and rearrangement invariant norm into other rearrangement invariant function spaces. The investigation is based on pointwise and integral estimates of the rearrangement or the oscillation of the rearrangement of f in terms of the rearrangement of the derivatives of f.
LA - eng
KW - Sobolev homogeneous spaces; optimal embeddings; rearrangement invariant spaces
UR - http://eudml.org/doc/283500
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.