Finiteness aspects of Gorenstein homological dimensions

Samir Bouchiba

Colloquium Mathematicae (2013)

  • Volume: 131, Issue: 2, page 171-193
  • ISSN: 0010-1354

Abstract

top
We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R), leftspli(R), recovering a recent theorem of [I. Emmanouil, J. Algebra 372 (2012), 376-396]. Moreover, this formula permits to recover the main theorem of [D. Bennis and N. Mahdou, Proc. Amer. Math. Soc. 138 (2010), 461-465]. Furthermore, we prove that, in the setting of a left and right Noetherian ring, the Gorenstein global dimension is left-right symmetric, generalizing a theorem of Enochs and Jenda. Finally, using recent work of I. Emmanouil and O. Talelli, we compute the Gorenstein global dimension for various types of rings such as commutative ℵ₀-Noetherian rings and group rings.

How to cite

top

Samir Bouchiba. "Finiteness aspects of Gorenstein homological dimensions." Colloquium Mathematicae 131.2 (2013): 171-193. <http://eudml.org/doc/283666>.

@article{SamirBouchiba2013,
abstract = {We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R), leftspli(R), recovering a recent theorem of [I. Emmanouil, J. Algebra 372 (2012), 376-396]. Moreover, this formula permits to recover the main theorem of [D. Bennis and N. Mahdou, Proc. Amer. Math. Soc. 138 (2010), 461-465]. Furthermore, we prove that, in the setting of a left and right Noetherian ring, the Gorenstein global dimension is left-right symmetric, generalizing a theorem of Enochs and Jenda. Finally, using recent work of I. Emmanouil and O. Talelli, we compute the Gorenstein global dimension for various types of rings such as commutative ℵ₀-Noetherian rings and group rings.},
author = {Samir Bouchiba},
journal = {Colloquium Mathematicae},
keywords = {Gorenstein projective dimension; Gorenstein injective dimension; Gorenstein global dimension; Gorenstein weak global dimension},
language = {eng},
number = {2},
pages = {171-193},
title = {Finiteness aspects of Gorenstein homological dimensions},
url = {http://eudml.org/doc/283666},
volume = {131},
year = {2013},
}

TY - JOUR
AU - Samir Bouchiba
TI - Finiteness aspects of Gorenstein homological dimensions
JO - Colloquium Mathematicae
PY - 2013
VL - 131
IS - 2
SP - 171
EP - 193
AB - We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R), leftspli(R), recovering a recent theorem of [I. Emmanouil, J. Algebra 372 (2012), 376-396]. Moreover, this formula permits to recover the main theorem of [D. Bennis and N. Mahdou, Proc. Amer. Math. Soc. 138 (2010), 461-465]. Furthermore, we prove that, in the setting of a left and right Noetherian ring, the Gorenstein global dimension is left-right symmetric, generalizing a theorem of Enochs and Jenda. Finally, using recent work of I. Emmanouil and O. Talelli, we compute the Gorenstein global dimension for various types of rings such as commutative ℵ₀-Noetherian rings and group rings.
LA - eng
KW - Gorenstein projective dimension; Gorenstein injective dimension; Gorenstein global dimension; Gorenstein weak global dimension
UR - http://eudml.org/doc/283666
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.