Regular orbital measures on Lie algebras
Colloquium Mathematicae (2008)
- Volume: 113, Issue: 1, page 1-11
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topAlex Wright. "Regular orbital measures on Lie algebras." Colloquium Mathematicae 113.1 (2008): 1-11. <http://eudml.org/doc/283701>.
@article{AlexWright2008,
abstract = {Let H₀ be a regular element of an irreducible Lie algebra , and let $μ_\{H₀\}$ be the orbital measure supported on $O_\{H₀\}$. We show that $μ̂_\{H₀\}^\{k\} ∈ L²()$ if and only if k > dim /(dim - rank ).},
author = {Alex Wright},
journal = {Colloquium Mathematicae},
keywords = {orbital measures; Lie algebras},
language = {eng},
number = {1},
pages = {1-11},
title = {Regular orbital measures on Lie algebras},
url = {http://eudml.org/doc/283701},
volume = {113},
year = {2008},
}
TY - JOUR
AU - Alex Wright
TI - Regular orbital measures on Lie algebras
JO - Colloquium Mathematicae
PY - 2008
VL - 113
IS - 1
SP - 1
EP - 11
AB - Let H₀ be a regular element of an irreducible Lie algebra , and let $μ_{H₀}$ be the orbital measure supported on $O_{H₀}$. We show that $μ̂_{H₀}^{k} ∈ L²()$ if and only if k > dim /(dim - rank ).
LA - eng
KW - orbital measures; Lie algebras
UR - http://eudml.org/doc/283701
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.