A class of irreducible polynomials
Joshua Harrington; Lenny Jones
Colloquium Mathematicae (2013)
- Volume: 132, Issue: 1, page 113-119
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topJoshua Harrington, and Lenny Jones. "A class of irreducible polynomials." Colloquium Mathematicae 132.1 (2013): 113-119. <http://eudml.org/doc/283823>.
@article{JoshuaHarrington2013,
abstract = {Let
$f(x) = xⁿ + k_\{n-1\}x^\{n-1\} + k_\{n-2\}x^\{n-2\} + ⋯ +k₁x + k₀ ∈ ℤ[x]$,
where
$3 ≤ k_\{n-1\} ≤ k_\{n-2\} ≤ ⋯ ≤ k₁ ≤ k₀ ≤ 2k_\{n-1\} - 3$.
We show that f(x) and f(x²) are irreducible over ℚ. Moreover, the upper bound of $2k_\{n-1\} - 3$ on the coefficients of f(x) is the best possible in this situation.},
author = {Joshua Harrington, Lenny Jones},
journal = {Colloquium Mathematicae},
keywords = {irreducible polynomial; Eneström-Kakeya},
language = {eng},
number = {1},
pages = {113-119},
title = {A class of irreducible polynomials},
url = {http://eudml.org/doc/283823},
volume = {132},
year = {2013},
}
TY - JOUR
AU - Joshua Harrington
AU - Lenny Jones
TI - A class of irreducible polynomials
JO - Colloquium Mathematicae
PY - 2013
VL - 132
IS - 1
SP - 113
EP - 119
AB - Let
$f(x) = xⁿ + k_{n-1}x^{n-1} + k_{n-2}x^{n-2} + ⋯ +k₁x + k₀ ∈ ℤ[x]$,
where
$3 ≤ k_{n-1} ≤ k_{n-2} ≤ ⋯ ≤ k₁ ≤ k₀ ≤ 2k_{n-1} - 3$.
We show that f(x) and f(x²) are irreducible over ℚ. Moreover, the upper bound of $2k_{n-1} - 3$ on the coefficients of f(x) is the best possible in this situation.
LA - eng
KW - irreducible polynomial; Eneström-Kakeya
UR - http://eudml.org/doc/283823
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.