On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua

Colloquium Mathematicae (2010)

  • Volume: 119, Issue: 1, page 109-122
  • ISSN: 0010-1354

Abstract

top
Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

How to cite

top

Bérenger Akon Kpata, Ibrahim Fofana, and Konin Koua. "On Fourier asymptotics of a generalized Cantor measure." Colloquium Mathematicae 119.1 (2010): 109-122. <http://eudml.org/doc/283841>.

@article{BérengerAkonKpata2010,
abstract = {Let d be a positive integer and μ a generalized Cantor measure satisfying $μ = ∑_\{j = 1\}^\{m\} a_\{j\}μ∘S_\{j\}^\{-1\}$, where $0 < a_\{j\} < 1$, $∑_\{j = 1\}^\{m\}a_\{j\} = 1$, $S_\{j\} = ρR + b_\{j\}$ with 0 < ρ < 1 and R an orthogonal transformation of $ℝ^\{d\}$. Then ⎧1 < p ≤ 2 ⇒ ⎨$sup_\{r>0\} r^\{d(1/α^\{\prime \}-1/p^\{\prime \})\} (∫_\{J_\{x\}^\{r\}\} |μ̂(y)|^\{p^\{\prime \}\}dy)^\{1/p^\{\prime \}\} ≤ D₁ρ^\{-d/α^\{\prime \}\}$, $x ∈ ℝ^\{d\}$, ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’$, $where $J_\{x\}^\{r\} = ∏_\{i=1\}^\{d\} (x_\{i\} - r/2,x_\{i\} + r/2)$, α’ is defined by $ρ^\{d/α^\{\prime \}\} = (∑_\{j=1\}^\{m\} a_\{j\}^\{p\})^\{1/p\}$ and the constants D₁ and D₂ depend only on d and p.},
author = {Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua},
journal = {Colloquium Mathematicae},
language = {eng},
number = {1},
pages = {109-122},
title = {On Fourier asymptotics of a generalized Cantor measure},
url = {http://eudml.org/doc/283841},
volume = {119},
year = {2010},
}

TY - JOUR
AU - Bérenger Akon Kpata
AU - Ibrahim Fofana
AU - Konin Koua
TI - On Fourier asymptotics of a generalized Cantor measure
JO - Colloquium Mathematicae
PY - 2010
VL - 119
IS - 1
SP - 109
EP - 122
AB - Let d be a positive integer and μ a generalized Cantor measure satisfying $μ = ∑_{j = 1}^{m} a_{j}μ∘S_{j}^{-1}$, where $0 < a_{j} < 1$, $∑_{j = 1}^{m}a_{j} = 1$, $S_{j} = ρR + b_{j}$ with 0 < ρ < 1 and R an orthogonal transformation of $ℝ^{d}$. Then ⎧1 < p ≤ 2 ⇒ ⎨$sup_{r>0} r^{d(1/α^{\prime }-1/p^{\prime })} (∫_{J_{x}^{r}} |μ̂(y)|^{p^{\prime }}dy)^{1/p^{\prime }} ≤ D₁ρ^{-d/α^{\prime }}$, $x ∈ ℝ^{d}$, ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’$, $where $J_{x}^{r} = ∏_{i=1}^{d} (x_{i} - r/2,x_{i} + r/2)$, α’ is defined by $ρ^{d/α^{\prime }} = (∑_{j=1}^{m} a_{j}^{p})^{1/p}$ and the constants D₁ and D₂ depend only on d and p.
LA - eng
UR - http://eudml.org/doc/283841
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.