Separable functors for the category of Doi Hom-Hopf modules

Shuangjian Guo; Xiaohui Zhang

Colloquium Mathematicae (2016)

  • Volume: 143, Issue: 1, page 23-37
  • ISSN: 0010-1354

Abstract

top
Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

How to cite

top

Shuangjian Guo, and Xiaohui Zhang. "Separable functors for the category of Doi Hom-Hopf modules." Colloquium Mathematicae 143.1 (2016): 23-37. <http://eudml.org/doc/284148>.

@article{ShuangjianGuo2016,
abstract = {Let $̃ ( _\{k\})(H)^\{C\}_\{A\}$ be the category of Doi Hom-Hopf modules, $̃ ( _\{k\})_\{A\}$ be the category of A-Hom-modules, and F be the forgetful functor from $̃ ( _\{k\})(H)^\{C\}_\{A\}$ to $̃ ( _\{k\})_\{A\}$. The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.},
author = {Shuangjian Guo, Xiaohui Zhang},
journal = {Colloquium Mathematicae},
keywords = {monoidal Hom-Hopf algebras; Doi Hom-Hopf modules; separable functors; normalized integrals; Maschke type theorems},
language = {eng},
number = {1},
pages = {23-37},
title = {Separable functors for the category of Doi Hom-Hopf modules},
url = {http://eudml.org/doc/284148},
volume = {143},
year = {2016},
}

TY - JOUR
AU - Shuangjian Guo
AU - Xiaohui Zhang
TI - Separable functors for the category of Doi Hom-Hopf modules
JO - Colloquium Mathematicae
PY - 2016
VL - 143
IS - 1
SP - 23
EP - 37
AB - Let $̃ ( _{k})(H)^{C}_{A}$ be the category of Doi Hom-Hopf modules, $̃ ( _{k})_{A}$ be the category of A-Hom-modules, and F be the forgetful functor from $̃ ( _{k})(H)^{C}_{A}$ to $̃ ( _{k})_{A}$. The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.
LA - eng
KW - monoidal Hom-Hopf algebras; Doi Hom-Hopf modules; separable functors; normalized integrals; Maschke type theorems
UR - http://eudml.org/doc/284148
ER -

NotesEmbed ?

top

You must be logged in to post comments.