Separable functors for the category of Doi Hom-Hopf modules
Colloquium Mathematicae (2016)
- Volume: 143, Issue: 1, page 23-37
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topShuangjian Guo, and Xiaohui Zhang. "Separable functors for the category of Doi Hom-Hopf modules." Colloquium Mathematicae 143.1 (2016): 23-37. <http://eudml.org/doc/284148>.
@article{ShuangjianGuo2016,
abstract = {Let $̃ ( _\{k\})(H)^\{C\}_\{A\}$ be the category of Doi Hom-Hopf modules, $̃ ( _\{k\})_\{A\}$ be the category of A-Hom-modules, and F be the forgetful functor from $̃ ( _\{k\})(H)^\{C\}_\{A\}$ to $̃ ( _\{k\})_\{A\}$. The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.},
author = {Shuangjian Guo, Xiaohui Zhang},
journal = {Colloquium Mathematicae},
keywords = {monoidal Hom-Hopf algebras; Doi Hom-Hopf modules; separable functors; normalized integrals; Maschke type theorems},
language = {eng},
number = {1},
pages = {23-37},
title = {Separable functors for the category of Doi Hom-Hopf modules},
url = {http://eudml.org/doc/284148},
volume = {143},
year = {2016},
}
TY - JOUR
AU - Shuangjian Guo
AU - Xiaohui Zhang
TI - Separable functors for the category of Doi Hom-Hopf modules
JO - Colloquium Mathematicae
PY - 2016
VL - 143
IS - 1
SP - 23
EP - 37
AB - Let $̃ ( _{k})(H)^{C}_{A}$ be the category of Doi Hom-Hopf modules, $̃ ( _{k})_{A}$ be the category of A-Hom-modules, and F be the forgetful functor from $̃ ( _{k})(H)^{C}_{A}$ to $̃ ( _{k})_{A}$. The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.
LA - eng
KW - monoidal Hom-Hopf algebras; Doi Hom-Hopf modules; separable functors; normalized integrals; Maschke type theorems
UR - http://eudml.org/doc/284148
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.