Singular finite horizon full information control via reduced order Riccati equations

Francesco Amato; Alfredo Pironti

Kybernetika (1995)

  • Volume: 31, Issue: 6, page 601-611
  • ISSN: 0023-5954

How to cite

top

Amato, Francesco, and Pironti, Alfredo. "Singular finite horizon full information $\mathcal {H}^\infty $ control via reduced order Riccati equations." Kybernetika 31.6 (1995): 601-611. <http://eudml.org/doc/28424>.

@article{Amato1995,
author = {Amato, Francesco, Pironti, Alfredo},
journal = {Kybernetika},
keywords = { control; linear; time-varying systems; finite horizon; singular case; reduced order Riccati differential equation},
language = {eng},
number = {6},
pages = {601-611},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Singular finite horizon full information $\mathcal \{H\}^\infty $ control via reduced order Riccati equations},
url = {http://eudml.org/doc/28424},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Amato, Francesco
AU - Pironti, Alfredo
TI - Singular finite horizon full information $\mathcal {H}^\infty $ control via reduced order Riccati equations
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 6
SP - 601
EP - 611
LA - eng
KW - control; linear; time-varying systems; finite horizon; singular case; reduced order Riccati differential equation
UR - http://eudml.org/doc/28424
ER -

References

top
  1. F. Amato, A. Pironti, A note on singular zero-sum linear quadratic differential games, In: Proceedings of the 33rd IEEE Conference or. Decision and Control, Orlando 1994. (1994) 
  2. T. Basar, G. J. Olsder, Dynamic Noncooperative Game Theory, Academic Press, New York 1989. (1989) MR1311921
  3. S. Butman, A method for optimizing control-free costs in systems with linear controllers, IEEE Trans. Automat. Control 13 (1968), 554-556. (1968) MR0238585
  4. J. W. Helton M. L. Walker, W. Zhan, control using compensators with access to the command signals, In: Proceedings of the 31st Conference on Decision and Control, Tucson 1992. (1992) 
  5. D. J. N. Limebeer B. D. O. Anderson P. P. Khargonekar, M. Green, A game theoretic approach to control for time-varying systems, SIAM J. Control Optim. 30 (1992), 262-283. (1992) MR1149068
  6. R. Ravi K. M. Nagpal, P. P. Khargonekar, control of linear time-varying systems: a state space approach, SIAM J. Control Optim. 29 (1991), 1394-1413. (1991) MR1132188
  7. J. L. Speyer, D. H. Jacobson, Necessary and sufficient condition for optimality for singular control problem, J. Math. Anal. Appl. 33 (1971). (1971) MR0272469
  8. A. A. Stoorvogel, H. Trentelman, The quadratic matrix inequality in singular control with state feedback, SIAM J. Control Optim. 28 (1990), 1190-1208. (1990) MR1064725
  9. G. Tadmor, Worst-case design in time domain: the maximum principle and the standard problem, Math. Control Signals Systems 3 (1990), 301-324. (1990) MR1066375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.