top
Let be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on is given.
Włodzimierz M. Mikulski. "Liftings of 1-forms to $(J^{r}T*)*$." Colloquium Mathematicae 91.1 (2002): 69-77. <http://eudml.org/doc/284257>.
@article{WłodzimierzM2002, abstract = {Let $J^\{r\}T*M$ be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let $(J^\{r\}T*M)*$ be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on $(J^\{r\}T*M)*$ is given.}, author = {Włodzimierz M. Mikulski}, journal = {Colloquium Mathematicae}, keywords = {natural bundle; natural operator; linear natural transformations}, language = {eng}, number = {1}, pages = {69-77}, title = {Liftings of 1-forms to $(J^\{r\}T*)*$}, url = {http://eudml.org/doc/284257}, volume = {91}, year = {2002}, }
TY - JOUR AU - Włodzimierz M. Mikulski TI - Liftings of 1-forms to $(J^{r}T*)*$ JO - Colloquium Mathematicae PY - 2002 VL - 91 IS - 1 SP - 69 EP - 77 AB - Let $J^{r}T*M$ be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let $(J^{r}T*M)*$ be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on $(J^{r}T*M)*$ is given. LA - eng KW - natural bundle; natural operator; linear natural transformations UR - http://eudml.org/doc/284257 ER -