A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type
Colloquium Mathematicae (2010)
- Volume: 119, Issue: 2, page 237-254
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGiacomo Gigante. "A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type." Colloquium Mathematicae 119.2 (2010): 237-254. <http://eudml.org/doc/284271>.
@article{GiacomoGigante2010,
abstract = {Let $\{A_\{k\}\}_\{k=0\}^\{+∞\}$ be a sequence of arbitrary complex numbers, let α,β > -1, let Pₙα,βn=0+∞$ be the Jacobi polynomials and define the functions
$$Hₙ(α,z) = ∑_\{m=n\}^\{+∞\} (A_\{m\}z^\{m\})/(Γ(α+n+m+1)(m-n)!)$,
$G(α,β,x,y) = ∑_\{r,s=0\}^\{+∞\} (A_\{r+s\}x^\{r\}y^\{s\})/(Γ(α+r+1)Γ(β+s+1)r!s!)$.
Then, for any non-negative integer n,
$∫_\{0\}^\{π/2\} G(α, β, x²sin²ϕ, y²cos²ϕ) Pₙ^\{α,β\}(cos²ϕ)sin^\{2α+1\}ϕcos^\{2β+1\}ϕd = 1/2 Hₙ(α+β+1,x²+y²) Pₙ^\{α,β\}((y²-x²)/(y²+x²))$.
When $A_\{k\} = (-1/4)^\{k\}$, this formula reduces to Bateman’s expansion for Bessel functions. For particular values of y and n one obtains generalizations of several formulas already known for Bessel functions, like Sonine’s first and second finite integrals and certain Neumann series expansions. Particular choices of $\{A_\{k\}\}_\{k=0\}^\{+∞\}$ allow one to write all these type of formulas for specific special functions, like Gegenbauer, Jacobi and Laguerre polynomials, Jacobi functions, or hypergeometric functions.},
author = {Giacomo Gigante},
journal = {Colloquium Mathematicae},
keywords = {Bateman's expansion; Sonine's finite integral; Jacobi polynomials},
language = {eng},
number = {2},
pages = {237-254},
title = {A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type},
url = {http://eudml.org/doc/284271},
volume = {119},
year = {2010},
}
TY - JOUR
AU - Giacomo Gigante
TI - A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type
JO - Colloquium Mathematicae
PY - 2010
VL - 119
IS - 2
SP - 237
EP - 254
AB - Let ${A_{k}}_{k=0}^{+∞}$ be a sequence of arbitrary complex numbers, let α,β > -1, let Pₙα,βn=0+∞$ be the Jacobi polynomials and define the functions
$$Hₙ(α,z) = ∑_{m=n}^{+∞} (A_{m}z^{m})/(Γ(α+n+m+1)(m-n)!)$,
$G(α,β,x,y) = ∑_{r,s=0}^{+∞} (A_{r+s}x^{r}y^{s})/(Γ(α+r+1)Γ(β+s+1)r!s!)$.
Then, for any non-negative integer n,
$∫_{0}^{π/2} G(α, β, x²sin²ϕ, y²cos²ϕ) Pₙ^{α,β}(cos²ϕ)sin^{2α+1}ϕcos^{2β+1}ϕd = 1/2 Hₙ(α+β+1,x²+y²) Pₙ^{α,β}((y²-x²)/(y²+x²))$.
When $A_{k} = (-1/4)^{k}$, this formula reduces to Bateman’s expansion for Bessel functions. For particular values of y and n one obtains generalizations of several formulas already known for Bessel functions, like Sonine’s first and second finite integrals and certain Neumann series expansions. Particular choices of ${A_{k}}_{k=0}^{+∞}$ allow one to write all these type of formulas for specific special functions, like Gegenbauer, Jacobi and Laguerre polynomials, Jacobi functions, or hypergeometric functions.
LA - eng
KW - Bateman's expansion; Sonine's finite integral; Jacobi polynomials
UR - http://eudml.org/doc/284271
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.