Trisections of module categories

José A. de la Peña; Idun Reiten

Colloquium Mathematicae (2007)

  • Volume: 107, Issue: 2, page 191-219
  • ISSN: 0010-1354

Abstract

top
Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.

How to cite

top

José A. de la Peña, and Idun Reiten. "Trisections of module categories." Colloquium Mathematicae 107.2 (2007): 191-219. <http://eudml.org/doc/284306>.

@article{JoséA2007,
abstract = {Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.},
author = {José A. de la Peña, Idun Reiten},
journal = {Colloquium Mathematicae},
keywords = {trisections of module categories; Auslander-Reiten quivers; standard components; factorization properties; finite-dimensional algebras; decompositions of categories of finitely generated modules},
language = {eng},
number = {2},
pages = {191-219},
title = {Trisections of module categories},
url = {http://eudml.org/doc/284306},
volume = {107},
year = {2007},
}

TY - JOUR
AU - José A. de la Peña
AU - Idun Reiten
TI - Trisections of module categories
JO - Colloquium Mathematicae
PY - 2007
VL - 107
IS - 2
SP - 191
EP - 219
AB - Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.
LA - eng
KW - trisections of module categories; Auslander-Reiten quivers; standard components; factorization properties; finite-dimensional algebras; decompositions of categories of finitely generated modules
UR - http://eudml.org/doc/284306
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.