Order convolution and vector-valued multipliers

U. B. Tewari

Colloquium Mathematicae (2007)

  • Volume: 108, Issue: 1, page 53-61
  • ISSN: 0010-1354

Abstract

top
Let I = (0,∞) with the usual topology. For x,y ∈ I, we define xy = max(x,y). Then I becomes a locally compact commutative topological semigroup. The Banach space L¹(I) of all Lebesgue integrable functions on I becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator T on L¹(I) is called a multiplier of L¹(I) if T(f*g) = f*Tg for all f,g ∈ L¹(I). The space of multipliers of L¹(I) was determined by Johnson and Lahr. Let X be a Banach space and L¹(I,X) be the Banach space of all X-valued Bochner integrable functions on I. We show that L¹(I,X) becomes an L¹(I)-Banach module. Suppose X and Y are Banach spaces. A bounded linear operator T from L¹(I,X) to L¹(I,Y) is called a multiplier if T(f*g) = f*Tg for all f ∈ L¹(I) and g ∈ L¹(I,X). In this paper, we characterize the multipliers from L¹(I,X) to L¹(I,Y).

How to cite

top

U. B. Tewari. "Order convolution and vector-valued multipliers." Colloquium Mathematicae 108.1 (2007): 53-61. <http://eudml.org/doc/284314>.

@article{U2007,
abstract = {Let I = (0,∞) with the usual topology. For x,y ∈ I, we define xy = max(x,y). Then I becomes a locally compact commutative topological semigroup. The Banach space L¹(I) of all Lebesgue integrable functions on I becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator T on L¹(I) is called a multiplier of L¹(I) if T(f*g) = f*Tg for all f,g ∈ L¹(I). The space of multipliers of L¹(I) was determined by Johnson and Lahr. Let X be a Banach space and L¹(I,X) be the Banach space of all X-valued Bochner integrable functions on I. We show that L¹(I,X) becomes an L¹(I)-Banach module. Suppose X and Y are Banach spaces. A bounded linear operator T from L¹(I,X) to L¹(I,Y) is called a multiplier if T(f*g) = f*Tg for all f ∈ L¹(I) and g ∈ L¹(I,X). In this paper, we characterize the multipliers from L¹(I,X) to L¹(I,Y).},
author = {U. B. Tewari},
journal = {Colloquium Mathematicae},
keywords = {interval; order convolution; semigroup; multiplier; operator-valued function; vector-valued function},
language = {eng},
number = {1},
pages = {53-61},
title = {Order convolution and vector-valued multipliers},
url = {http://eudml.org/doc/284314},
volume = {108},
year = {2007},
}

TY - JOUR
AU - U. B. Tewari
TI - Order convolution and vector-valued multipliers
JO - Colloquium Mathematicae
PY - 2007
VL - 108
IS - 1
SP - 53
EP - 61
AB - Let I = (0,∞) with the usual topology. For x,y ∈ I, we define xy = max(x,y). Then I becomes a locally compact commutative topological semigroup. The Banach space L¹(I) of all Lebesgue integrable functions on I becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator T on L¹(I) is called a multiplier of L¹(I) if T(f*g) = f*Tg for all f,g ∈ L¹(I). The space of multipliers of L¹(I) was determined by Johnson and Lahr. Let X be a Banach space and L¹(I,X) be the Banach space of all X-valued Bochner integrable functions on I. We show that L¹(I,X) becomes an L¹(I)-Banach module. Suppose X and Y are Banach spaces. A bounded linear operator T from L¹(I,X) to L¹(I,Y) is called a multiplier if T(f*g) = f*Tg for all f ∈ L¹(I) and g ∈ L¹(I,X). In this paper, we characterize the multipliers from L¹(I,X) to L¹(I,Y).
LA - eng
KW - interval; order convolution; semigroup; multiplier; operator-valued function; vector-valued function
UR - http://eudml.org/doc/284314
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.