# A new version of Local-Global Principle for annihilations of local cohomology modules

K. Khashyarmanesh; M. Yassi; A. Abbasi

Colloquium Mathematicae (2004)

- Volume: 100, Issue: 2, page 213-219
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topK. Khashyarmanesh, M. Yassi, and A. Abbasi. "A new version of Local-Global Principle for annihilations of local cohomology modules." Colloquium Mathematicae 100.2 (2004): 213-219. <http://eudml.org/doc/284367>.

@article{K2004,

abstract = {Let R be a commutative Noetherian ring. Let and be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the -finiteness dimension of $f^\{\}_\{\}(N)$ relative to in the context of generalized local cohomology modules as
$f^\{\}_\{\}(M,N): = inf\{i ≥ 0 | ⊆ √(0:_R H^\{i\}_\{\}(M,N))\}$,
where M is an R-module. We also show that $f^\{\}_\{\}(N) ≤ f^\{\}_\{\}(M,N)$ for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.},

author = {K. Khashyarmanesh, M. Yassi, A. Abbasi},

journal = {Colloquium Mathematicae},

keywords = {finiteness dimension; generalized local cohomology},

language = {eng},

number = {2},

pages = {213-219},

title = {A new version of Local-Global Principle for annihilations of local cohomology modules},

url = {http://eudml.org/doc/284367},

volume = {100},

year = {2004},

}

TY - JOUR

AU - K. Khashyarmanesh

AU - M. Yassi

AU - A. Abbasi

TI - A new version of Local-Global Principle for annihilations of local cohomology modules

JO - Colloquium Mathematicae

PY - 2004

VL - 100

IS - 2

SP - 213

EP - 219

AB - Let R be a commutative Noetherian ring. Let and be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the -finiteness dimension of $f^{}_{}(N)$ relative to in the context of generalized local cohomology modules as
$f^{}_{}(M,N): = inf{i ≥ 0 | ⊆ √(0:_R H^{i}_{}(M,N))}$,
where M is an R-module. We also show that $f^{}_{}(N) ≤ f^{}_{}(M,N)$ for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.

LA - eng

KW - finiteness dimension; generalized local cohomology

UR - http://eudml.org/doc/284367

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.