top
Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.
R. Naghipour, H. Zakeri, and N. Zamani. "Cohen-Macaulayness of multiplication rings and modules." Colloquium Mathematicae 95.1 (2003): 133-138. <http://eudml.org/doc/284524>.
@article{R2003, abstract = {Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.}, author = {R. Naghipour, H. Zakeri, N. Zamani}, journal = {Colloquium Mathematicae}, keywords = {multiplication ring; multiplication module; Cohen-Macaulayness; Noetherian ring; primary decomposition}, language = {eng}, number = {1}, pages = {133-138}, title = {Cohen-Macaulayness of multiplication rings and modules}, url = {http://eudml.org/doc/284524}, volume = {95}, year = {2003}, }
TY - JOUR AU - R. Naghipour AU - H. Zakeri AU - N. Zamani TI - Cohen-Macaulayness of multiplication rings and modules JO - Colloquium Mathematicae PY - 2003 VL - 95 IS - 1 SP - 133 EP - 138 AB - Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian. LA - eng KW - multiplication ring; multiplication module; Cohen-Macaulayness; Noetherian ring; primary decomposition UR - http://eudml.org/doc/284524 ER -