On limiting embeddings of Besov spaces
Studia Mathematica (2005)
- Volume: 171, Issue: 1, page 1-13
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topV. I. Kolyada, and A. K. Lerner. "On limiting embeddings of Besov spaces." Studia Mathematica 171.1 (2005): 1-13. <http://eudml.org/doc/284640>.
@article{V2005,
abstract = {We investigate the classical embedding $B_\{p,θ\}^\{s\} ⊂ B_\{q,θ\}^\{s-n(1/p-1/q)\}$. The sharp asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem concerning an analogous problem for the Sobolev-type embedding. We also give a different, elementary proof of the latter theorem.},
author = {V. I. Kolyada, A. K. Lerner},
journal = {Studia Mathematica},
keywords = {Sobolev space; Besov space; embedding theorem; rearrangement estimate; modulus of continuity},
language = {eng},
number = {1},
pages = {1-13},
title = {On limiting embeddings of Besov spaces},
url = {http://eudml.org/doc/284640},
volume = {171},
year = {2005},
}
TY - JOUR
AU - V. I. Kolyada
AU - A. K. Lerner
TI - On limiting embeddings of Besov spaces
JO - Studia Mathematica
PY - 2005
VL - 171
IS - 1
SP - 1
EP - 13
AB - We investigate the classical embedding $B_{p,θ}^{s} ⊂ B_{q,θ}^{s-n(1/p-1/q)}$. The sharp asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem concerning an analogous problem for the Sobolev-type embedding. We also give a different, elementary proof of the latter theorem.
LA - eng
KW - Sobolev space; Besov space; embedding theorem; rearrangement estimate; modulus of continuity
UR - http://eudml.org/doc/284640
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.