On the supremum of random Dirichlet polynomials
Mikhail Lifshits; Michel Weber
Studia Mathematica (2007)
- Volume: 182, Issue: 1, page 41-65
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMikhail Lifshits, and Michel Weber. "On the supremum of random Dirichlet polynomials." Studia Mathematica 182.1 (2007): 41-65. <http://eudml.org/doc/284720>.
@article{MikhailLifshits2007,
	abstract = {We study the supremum of some random Dirichlet polynomials $D_\{N\}(t) = ∑_\{n=2\}^\{N\} εₙdₙn^\{-σ-it\}$, where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials $∑_\{n∈ _\{τ\}\} εₙn^\{-σ-it\}$, $_\{τ\} = \{2 ≤ n ≤ N : P⁺(n) ≤ p_\{τ\}\}$, P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec,
$ sup_\{t∈ ℝ\} |∑_\{n=2\}^\{N\} εₙn^\{-σ-it\}| ≈ (N^\{1-σ\})/(log N)$.
The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.},
	author = {Mikhail Lifshits, Michel Weber},
	journal = {Studia Mathematica},
	keywords = {Dirichlet polynomials; Rademacher random variables; metric entropy method},
	language = {eng},
	number = {1},
	pages = {41-65},
	title = {On the supremum of random Dirichlet polynomials},
	url = {http://eudml.org/doc/284720},
	volume = {182},
	year = {2007},
}
TY  - JOUR
AU  - Mikhail Lifshits
AU  - Michel Weber
TI  - On the supremum of random Dirichlet polynomials
JO  - Studia Mathematica
PY  - 2007
VL  - 182
IS  - 1
SP  - 41
EP  - 65
AB  - We study the supremum of some random Dirichlet polynomials $D_{N}(t) = ∑_{n=2}^{N} εₙdₙn^{-σ-it}$, where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials $∑_{n∈ _{τ}} εₙn^{-σ-it}$, $_{τ} = {2 ≤ n ≤ N : P⁺(n) ≤ p_{τ}}$, P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec,
$ sup_{t∈ ℝ} |∑_{n=2}^{N} εₙn^{-σ-it}| ≈ (N^{1-σ})/(log N)$.
The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.
LA  - eng
KW  - Dirichlet polynomials; Rademacher random variables; metric entropy method
UR  - http://eudml.org/doc/284720
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 