Marcinkiewicz integrals on product spaces
H. Al-Qassem; A. Al-Salman; L. C. Cheng; Y. Pan
Studia Mathematica (2005)
- Volume: 167, Issue: 3, page 227-234
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topH. Al-Qassem, et al. "Marcinkiewicz integrals on product spaces." Studia Mathematica 167.3 (2005): 227-234. <http://eudml.org/doc/284761>.
@article{H2005,
	abstract = {We prove the $L^\{p\}$ boundedness of the Marcinkiewicz integral operators $μ_\{Ω\}$ on $ℝ^\{n₁\}× ⋯ ×ℝ^\{n_\{k\}\}$ under the condition that $Ω ∈ L(log L)^\{k/2\}(^\{n₁-1\}× ⋯ ×^\{n_\{k\}-1\})$. The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.},
	author = {H. Al-Qassem, A. Al-Salman, L. C. Cheng, Y. Pan},
	journal = {Studia Mathematica},
	keywords = {Marcinkiewicz integrals; product spaces; -boundedness},
	language = {eng},
	number = {3},
	pages = {227-234},
	title = {Marcinkiewicz integrals on product spaces},
	url = {http://eudml.org/doc/284761},
	volume = {167},
	year = {2005},
}
TY  - JOUR
AU  - H. Al-Qassem
AU  - A. Al-Salman
AU  - L. C. Cheng
AU  - Y. Pan
TI  - Marcinkiewicz integrals on product spaces
JO  - Studia Mathematica
PY  - 2005
VL  - 167
IS  - 3
SP  - 227
EP  - 234
AB  - We prove the $L^{p}$ boundedness of the Marcinkiewicz integral operators $μ_{Ω}$ on $ℝ^{n₁}× ⋯ ×ℝ^{n_{k}}$ under the condition that $Ω ∈ L(log L)^{k/2}(^{n₁-1}× ⋯ ×^{n_{k}-1})$. The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.
LA  - eng
KW  - Marcinkiewicz integrals; product spaces; -boundedness
UR  - http://eudml.org/doc/284761
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 