Atomic decomposition on Hardy-Sobolev spaces

Yong-Kum Cho; Joonil Kim

Studia Mathematica (2006)

  • Volume: 177, Issue: 1, page 25-42
  • ISSN: 0039-3223

Abstract

top
As a natural extension of L p Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.

How to cite

top

Yong-Kum Cho, and Joonil Kim. "Atomic decomposition on Hardy-Sobolev spaces." Studia Mathematica 177.1 (2006): 25-42. <http://eudml.org/doc/284849>.

@article{Yong2006,
abstract = {As a natural extension of $L^\{p\}$ Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.},
author = {Yong-Kum Cho, Joonil Kim},
journal = {Studia Mathematica},
keywords = {difference operator; Hardy space; Sobolev space; Sobolev embedding theorem; decomposition; Calderón’s reproducing formula; Hardy-Sobolev space; maximal characterization; Sobolev embedding theorem; Whitney's decomposition lemma},
language = {eng},
number = {1},
pages = {25-42},
title = {Atomic decomposition on Hardy-Sobolev spaces},
url = {http://eudml.org/doc/284849},
volume = {177},
year = {2006},
}

TY - JOUR
AU - Yong-Kum Cho
AU - Joonil Kim
TI - Atomic decomposition on Hardy-Sobolev spaces
JO - Studia Mathematica
PY - 2006
VL - 177
IS - 1
SP - 25
EP - 42
AB - As a natural extension of $L^{p}$ Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.
LA - eng
KW - difference operator; Hardy space; Sobolev space; Sobolev embedding theorem; decomposition; Calderón’s reproducing formula; Hardy-Sobolev space; maximal characterization; Sobolev embedding theorem; Whitney's decomposition lemma
UR - http://eudml.org/doc/284849
ER -

NotesEmbed ?

top

You must be logged in to post comments.