Computational methods for estimation in the modeling of nonlinear elastomers

H. T. Banks; Nancy J. Lybeck; M. J. Gaitens; B. C. Muñoz; L. C. Yanyo

Kybernetika (1996)

  • Volume: 32, Issue: 6, page 526-542
  • ISSN: 0023-5954

How to cite

top

Banks, H. T., et al. "Computational methods for estimation in the modeling of nonlinear elastomers." Kybernetika 32.6 (1996): 526-542. <http://eudml.org/doc/28525>.

@article{Banks1996,
author = {Banks, H. T., Lybeck, Nancy J., Gaitens, M. J., Muñoz, B. C., Yanyo, L. C.},
journal = {Kybernetika},
language = {eng},
number = {6},
pages = {526-542},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Computational methods for estimation in the modeling of nonlinear elastomers},
url = {http://eudml.org/doc/28525},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Banks, H. T.
AU - Lybeck, Nancy J.
AU - Gaitens, M. J.
AU - Muñoz, B. C.
AU - Yanyo, L. C.
TI - Computational methods for estimation in the modeling of nonlinear elastomers
JO - Kybernetika
PY - 1996
PB - Institute of Information Theory and Automation AS CR
VL - 32
IS - 6
SP - 526
EP - 542
LA - eng
UR - http://eudml.org/doc/28525
ER -

References

top
  1. H. T. Banks D. S. Gilliam, V. I. Shubov, Well-Posedness for a One Dimensional Nonlinear Beam, Technical Report No. CRSC-TR94-18, NCSU, 1994; Computation and Control IV, K. Bowers and J. Lund, eds., Birkhäuser, Boston 1995, pp. 1-21. (1994) MR1349580
  2. H. T. Banks D. S. Gilliam, V. I. Shubov, Global Solvability for Damped Abstract Nonlinear Hyperbolic Systems, Technical Report No. CRSC-TR95-25, NCSU, 1995; Differential and Integral Equations, to appear. (1995) MR1424814
  3. H. T. Banks K. Ito, Y. Wang, Well Posedness for Damped Second Order Systems with Unbounded Input Operators, Technical Report No. CRSC-TR93-10, NCSU, 1993; Differential and Integral Equations 8 (1995), 587-606. (1993) MR1306577
  4. H. T. Banks, N. J. Lybeck, A Nonlinear Lax-Milgram Lemma Arising in the Modeling of Elastomers, Technical Report No. CRSC-TR95-37, NCSU, 1995; Nonlinear Partial Differential Equations, Collège de France Seminar, Vol. 13, 1996, to appear. (1995) MR1773073
  5. H. T. Banks N. Medhin, Y. Zhang, A Mathematical Framework for Curved Active Constrained Layer Structures: Well-posedness and Approximation, Technical Report No. CRSC-TR95-32, NCSU, 1995; Numer. Funct. Anal. Optim., to appear. (1995) MR1391870
  6. H. T. Banks, J. G. Wade, Weak Tau approximations for distributed parameter systems in inverse problems, Numer. Funct. Anal. Optim. 12 (1991), 1-31. (1991) Zbl0744.35061MR1125044
  7. F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785. (1965) Zbl0138.39902MR0180882
  8. D. J. Charlton J. Yang, K. K. Teh, A review of methods to characterize rubber elastic behavior for use in finite element analysis, Rubber Chemistry & Technology 67 (1994), 481-503. (1994) 
  9. R. M. Christensen, Theory of Viscoelasticity, Academic Press, New York 1982. (1982) 
  10. R. W. Clough, J. Penzien, Dynamics of Structures, McGraw-Hill, New York 1975. (1975) Zbl0357.73068
  11. R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods, Springer-Verlag, Berlin--Heidelberg 1988. (1988) MR0969367
  12. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York 1980. (1980) 
  13. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. (1962) Zbl0111.31202MR0169064
  14. A. C. Pipkin, Lectures on Viscoelasticity Theory, Springer-Verlag, Berlin--Heidelberg 1972. (1972) Zbl0237.73022
  15. M. Renardy W. J. Hrusa, J. A. Nohel, Mathematical Problems in Viscoelasticity, Pittman Monograph, Longman/J. Wiley & Sons, 1987. (1987) MR0919738
  16. R. S. Rivlin, Large elastic deformations of isotropic materials I, II, III, Philos. Trans. Roy. Soc. London Ser. A 240 (1948), 459-490, 491-508, 509-525. (1948) 
  17. I. H. Shames, F. A. Cozzarelli, Elastic and Inelastic Stress Analysis, Prentice Hall, Englewood Cliffs, N. J. 1992. (1992) Zbl0765.73001
  18. S. Timoshenko D. H. Young, W. Weaver, Jr., Vibration Problems in Engineering, J. Wiley & Sons, New York 1974. (1974) 
  19. L. R. G. Treloar, The Physics of Rubber Elasticity, Clarendon Press, Oxford 1975. (1975) 
  20. I. M. Ward, Mechanical Properties of Solid Polymers, John Wiley & Sons, New York 1983. (1983) 
  21. J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge 1987. (1987) Zbl0623.35006MR0895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.