L p type mapping estimates for oscillatory integrals in higher dimensions

G. Sampson

Studia Mathematica (2006)

  • Volume: 172, Issue: 2, page 101-123
  • ISSN: 0039-3223

Abstract

top
We show in two dimensions that if K f = ² k ( x , y ) f ( y ) d y , k ( x , y ) = ( e i x a · y b ) / ( | x - y | η ) , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), v p ( y ) = y ( p / p ' ) ( 1 ̅ - b / a ) , then | | K f | | p C | | f | | p , v p if η + α₁ + α₂ < 2, α j = 1 - b j / a j , j = 1,2. Our methods apply in all dimensions and also for more general kernels.

How to cite

top

G. Sampson. "$L^{p}$ type mapping estimates for oscillatory integrals in higher dimensions." Studia Mathematica 172.2 (2006): 101-123. <http://eudml.org/doc/285278>.

@article{G2006,
abstract = {We show in two dimensions that if $Kf = ∫_\{ℝ₊²\} k(x,y)f(y)dy$, $k(x,y) = (e^\{ix^\{a\}·y^\{b\}\})/(|x-y|^\{η\})$, p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), $v_\{p\}(y) = y^\{(p/p^\{\prime \})(1̅-b/a)\}$, then $||Kf||_\{p\} ≤ C||f||_\{p,v_\{p\}\}$ if η + α₁ + α₂ < 2, $α_\{j\} = 1 - b_\{j\}/a_\{j\}$, j = 1,2. Our methods apply in all dimensions and also for more general kernels.},
author = {G. Sampson},
journal = {Studia Mathematica},
keywords = {oscillatory integrals; singular integrals; -boundedness},
language = {eng},
number = {2},
pages = {101-123},
title = {$L^\{p\}$ type mapping estimates for oscillatory integrals in higher dimensions},
url = {http://eudml.org/doc/285278},
volume = {172},
year = {2006},
}

TY - JOUR
AU - G. Sampson
TI - $L^{p}$ type mapping estimates for oscillatory integrals in higher dimensions
JO - Studia Mathematica
PY - 2006
VL - 172
IS - 2
SP - 101
EP - 123
AB - We show in two dimensions that if $Kf = ∫_{ℝ₊²} k(x,y)f(y)dy$, $k(x,y) = (e^{ix^{a}·y^{b}})/(|x-y|^{η})$, p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), $v_{p}(y) = y^{(p/p^{\prime })(1̅-b/a)}$, then $||Kf||_{p} ≤ C||f||_{p,v_{p}}$ if η + α₁ + α₂ < 2, $α_{j} = 1 - b_{j}/a_{j}$, j = 1,2. Our methods apply in all dimensions and also for more general kernels.
LA - eng
KW - oscillatory integrals; singular integrals; -boundedness
UR - http://eudml.org/doc/285278
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.