On Gaussian Brunn-Minkowski inequalities
Studia Mathematica (2009)
- Volume: 191, Issue: 3, page 283-304
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFranck Barthe, and Nolwen Huet. "On Gaussian Brunn-Minkowski inequalities." Studia Mathematica 191.3 (2009): 283-304. <http://eudml.org/doc/285284>.
@article{FranckBarthe2009,
abstract = {We are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for m Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp-Lieb inequality and of its reverse form, which follow exactly the same lines.},
author = {Franck Barthe, Nolwen Huet},
journal = {Studia Mathematica},
keywords = {Brunn–Minkowski inequality; Gaussian measure; heat equation; Brascamp–Lieb inequalities},
language = {eng},
number = {3},
pages = {283-304},
title = {On Gaussian Brunn-Minkowski inequalities},
url = {http://eudml.org/doc/285284},
volume = {191},
year = {2009},
}
TY - JOUR
AU - Franck Barthe
AU - Nolwen Huet
TI - On Gaussian Brunn-Minkowski inequalities
JO - Studia Mathematica
PY - 2009
VL - 191
IS - 3
SP - 283
EP - 304
AB - We are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for m Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp-Lieb inequality and of its reverse form, which follow exactly the same lines.
LA - eng
KW - Brunn–Minkowski inequality; Gaussian measure; heat equation; Brascamp–Lieb inequalities
UR - http://eudml.org/doc/285284
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.