Generalization of a theorem of Steinhaus

C. Cobeli; G. Groza; M. Vâjâitu; A. Zaharescu

Colloquium Mathematicae (2002)

  • Volume: 92, Issue: 2, page 257-266
  • ISSN: 0010-1354

Abstract

top
We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.

How to cite

top

C. Cobeli, et al. "Generalization of a theorem of Steinhaus." Colloquium Mathematicae 92.2 (2002): 257-266. <http://eudml.org/doc/285289>.

@article{C2002,
abstract = {We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.},
author = {C. Cobeli, G. Groza, M. Vâjâitu, A. Zaharescu},
journal = {Colloquium Mathematicae},
keywords = {three gap theorem; number of primitive spacings; fractional parts},
language = {eng},
number = {2},
pages = {257-266},
title = {Generalization of a theorem of Steinhaus},
url = {http://eudml.org/doc/285289},
volume = {92},
year = {2002},
}

TY - JOUR
AU - C. Cobeli
AU - G. Groza
AU - M. Vâjâitu
AU - A. Zaharescu
TI - Generalization of a theorem of Steinhaus
JO - Colloquium Mathematicae
PY - 2002
VL - 92
IS - 2
SP - 257
EP - 266
AB - We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.
LA - eng
KW - three gap theorem; number of primitive spacings; fractional parts
UR - http://eudml.org/doc/285289
ER -

NotesEmbed ?

top

You must be logged in to post comments.