Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces
Studia Mathematica (2014)
- Volume: 223, Issue: 1, page 77-95
 - ISSN: 0039-3223
 
Access Full Article
topAbstract
topHow to cite
topHidemitsu Wadade. "Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces." Studia Mathematica 223.1 (2014): 77-95. <http://eudml.org/doc/285381>.
@article{HidemitsuWadade2014,
	abstract = {We establish the embedding of the critical Sobolev-Lorentz-Zygmund space $H^\{n/p\}_\{p,q,λ₁,...,λₘ\}(ℝⁿ)$ into the generalized Morrey space $ℳ_\{Φ,r\}(ℝⁿ)$ with an optimal Young function Φ. As an application, we obtain the almost Lipschitz continuity for functions in $H^\{n/p + 1\}_\{p,q,λ₁,...,λₘ\}(ℝⁿ)$. O’Neil’s inequality and its reverse play an essential role in the proofs of the main theorems.},
	author = {Hidemitsu Wadade},
	journal = {Studia Mathematica},
	keywords = {Sobolev-Lorentz-Zygmund space; generalized Morrey space; almost Lipschitz continuity},
	language = {eng},
	number = {1},
	pages = {77-95},
	title = {Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces},
	url = {http://eudml.org/doc/285381},
	volume = {223},
	year = {2014},
}
TY  - JOUR
AU  - Hidemitsu Wadade
TI  - Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces
JO  - Studia Mathematica
PY  - 2014
VL  - 223
IS  - 1
SP  - 77
EP  - 95
AB  - We establish the embedding of the critical Sobolev-Lorentz-Zygmund space $H^{n/p}_{p,q,λ₁,...,λₘ}(ℝⁿ)$ into the generalized Morrey space $ℳ_{Φ,r}(ℝⁿ)$ with an optimal Young function Φ. As an application, we obtain the almost Lipschitz continuity for functions in $H^{n/p + 1}_{p,q,λ₁,...,λₘ}(ℝⁿ)$. O’Neil’s inequality and its reverse play an essential role in the proofs of the main theorems.
LA  - eng
KW  - Sobolev-Lorentz-Zygmund space; generalized Morrey space; almost Lipschitz continuity
UR  - http://eudml.org/doc/285381
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.