Proper subspaces and compatibility

Esteban Andruchow; Eduardo Chiumiento; María Eugenia Di Iorio y Lucero

Studia Mathematica (2015)

  • Volume: 231, Issue: 3, page 195-218
  • ISSN: 0039-3223

Abstract

top
Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection. Furthermore, if there exists a symmetrizable projection onto 𝓢, then 𝓢 belongs to a well-known class of subspaces called compatible subspaces. We find equivalent conditions to describe proper subspaces. Then we prove a necessary and sufficient condition for a proper subspace to be compatible. The existence of non-compatible proper subspaces is related to spectral properties of symmetrizable operators. Each proper subspace 𝓢 has a supplement 𝒯 which is also a proper subspace. We give a characterization of the compatibility of both subspaces 𝓢 and 𝒯. Several examples are provided that illustrate different situations between proper and compatible subspaces.

How to cite

top

Esteban Andruchow, Eduardo Chiumiento, and María Eugenia Di Iorio y Lucero. "Proper subspaces and compatibility." Studia Mathematica 231.3 (2015): 195-218. <http://eudml.org/doc/285385>.

@article{EstebanAndruchow2015,
abstract = {Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection. Furthermore, if there exists a symmetrizable projection onto 𝓢, then 𝓢 belongs to a well-known class of subspaces called compatible subspaces. We find equivalent conditions to describe proper subspaces. Then we prove a necessary and sufficient condition for a proper subspace to be compatible. The existence of non-compatible proper subspaces is related to spectral properties of symmetrizable operators. Each proper subspace 𝓢 has a supplement 𝒯 which is also a proper subspace. We give a characterization of the compatibility of both subspaces 𝓢 and 𝒯. Several examples are provided that illustrate different situations between proper and compatible subspaces.},
author = {Esteban Andruchow, Eduardo Chiumiento, María Eugenia Di Iorio y Lucero},
journal = {Studia Mathematica},
keywords = {projection; compatible subspace; proper operator},
language = {eng},
number = {3},
pages = {195-218},
title = {Proper subspaces and compatibility},
url = {http://eudml.org/doc/285385},
volume = {231},
year = {2015},
}

TY - JOUR
AU - Esteban Andruchow
AU - Eduardo Chiumiento
AU - María Eugenia Di Iorio y Lucero
TI - Proper subspaces and compatibility
JO - Studia Mathematica
PY - 2015
VL - 231
IS - 3
SP - 195
EP - 218
AB - Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection. Furthermore, if there exists a symmetrizable projection onto 𝓢, then 𝓢 belongs to a well-known class of subspaces called compatible subspaces. We find equivalent conditions to describe proper subspaces. Then we prove a necessary and sufficient condition for a proper subspace to be compatible. The existence of non-compatible proper subspaces is related to spectral properties of symmetrizable operators. Each proper subspace 𝓢 has a supplement 𝒯 which is also a proper subspace. We give a characterization of the compatibility of both subspaces 𝓢 and 𝒯. Several examples are provided that illustrate different situations between proper and compatible subspaces.
LA - eng
KW - projection; compatible subspace; proper operator
UR - http://eudml.org/doc/285385
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.