Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
Pablo L. De Nápoli; Irene Drelichman; Nicolas Saintier
Studia Mathematica (2016)
- Volume: 233, Issue: 1, page 47-65
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topPablo L. De Nápoli, Irene Drelichman, and Nicolas Saintier. "Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces." Studia Mathematica 233.1 (2016): 47-65. <http://eudml.org/doc/285423>.
@article{PabloL2016,
abstract = {We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class $A_\{∞\}$. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.},
author = {Pablo L. De Nápoli, Irene Drelichman, Nicolas Saintier},
journal = {Studia Mathematica},
keywords = {embedding theorems; radial functions; Muckenhoupt weights; wavelet bases},
language = {eng},
number = {1},
pages = {47-65},
title = {Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces},
url = {http://eudml.org/doc/285423},
volume = {233},
year = {2016},
}
TY - JOUR
AU - Pablo L. De Nápoli
AU - Irene Drelichman
AU - Nicolas Saintier
TI - Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
JO - Studia Mathematica
PY - 2016
VL - 233
IS - 1
SP - 47
EP - 65
AB - We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class $A_{∞}$. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.
LA - eng
KW - embedding theorems; radial functions; Muckenhoupt weights; wavelet bases
UR - http://eudml.org/doc/285423
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.