Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
Petru A. Cioica; Stephan Dahlke; Stefan Kinzel; Felix Lindner; Thorsten Raasch; Klaus Ritter; René L. Schilling
Studia Mathematica (2011)
- Volume: 207, Issue: 3, page 197-234
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topPetru A. Cioica, et al. "Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains." Studia Mathematica 207.3 (2011): 197-234. <http://eudml.org/doc/285442>.
@article{PetruA2011,
abstract = {We use the scale of Besov spaces $B^\{α\}_\{τ,τ\}()$, 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.},
author = {Petru A. Cioica, Stephan Dahlke, Stefan Kinzel, Felix Lindner, Thorsten Raasch, Klaus Ritter, René L. Schilling},
journal = {Studia Mathematica},
keywords = {stochastic partial differential equations; spatial Besov regularity},
language = {eng},
number = {3},
pages = {197-234},
title = {Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains},
url = {http://eudml.org/doc/285442},
volume = {207},
year = {2011},
}
TY - JOUR
AU - Petru A. Cioica
AU - Stephan Dahlke
AU - Stefan Kinzel
AU - Felix Lindner
AU - Thorsten Raasch
AU - Klaus Ritter
AU - René L. Schilling
TI - Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
JO - Studia Mathematica
PY - 2011
VL - 207
IS - 3
SP - 197
EP - 234
AB - We use the scale of Besov spaces $B^{α}_{τ,τ}()$, 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
LA - eng
KW - stochastic partial differential equations; spatial Besov regularity
UR - http://eudml.org/doc/285442
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.