Estimation of the Szlenk index of Banach spaces via Schreier spaces
Studia Mathematica (2013)
- Volume: 216, Issue: 2, page 149-178
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRyan Causey. "Estimation of the Szlenk index of Banach spaces via Schreier spaces." Studia Mathematica 216.2 (2013): 149-178. <http://eudml.org/doc/285547>.
@article{RyanCausey2013,
	abstract = {For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index $ω^\{α+1\}$ which is universal for the class of separable Banach spaces with Szlenk index not exceeding $ω^\{α\}$. Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.},
	author = {Ryan Causey},
	journal = {Studia Mathematica},
	keywords = {szlenk index; universality; embedding in spaces with finitedimensional decompositions; Schreier spaces},
	language = {eng},
	number = {2},
	pages = {149-178},
	title = {Estimation of the Szlenk index of Banach spaces via Schreier spaces},
	url = {http://eudml.org/doc/285547},
	volume = {216},
	year = {2013},
}
TY  - JOUR
AU  - Ryan Causey
TI  - Estimation of the Szlenk index of Banach spaces via Schreier spaces
JO  - Studia Mathematica
PY  - 2013
VL  - 216
IS  - 2
SP  - 149
EP  - 178
AB  - For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index $ω^{α+1}$ which is universal for the class of separable Banach spaces with Szlenk index not exceeding $ω^{α}$. Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.
LA  - eng
KW  - szlenk index; universality; embedding in spaces with finitedimensional decompositions; Schreier spaces
UR  - http://eudml.org/doc/285547
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 