On the optimum sequential test of two hypotheses for statistically dependent observations
Kybernetika (1978)
- Volume: 14, Issue: 1, page (57)-69
- ISSN: 0023-5954
Access Full Article
topHow to cite
topReferences
top- A. Wald J. Wolfowitz, Optimum character of the sequential probability ratio test, Ann. of Math. Stát. 19 (1948), 3, 326-339. (1948) MR0026779
- Y. S. Chow H. Robbins, On optimal stopping rules, Zeitsch. für Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. (1963) MR0157465
- J. Cochlar, Formulace problému sekvenční detekce radiolokačních cílů v korelovaném šumu, Res. rep. III-1-4/4, 1976, ČVUT - FEL Praha. (1976)
- J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Paris 1964. (1964) Zbl0137.11203MR0198504
- M. H. DeGroot, Optimal statistical decisions, McGraw-Hill, New York 1970. (1970) Zbl0225.62006MR0356303
- J. Schmidtmayer, Maticový počet a jeho použití v elektrotechnice, SNTL, Praha 1954. (1954)
Citations in EuDML Documents
top- Jiří Cochlar, The optimum sequential test of a finite number of hypotheses for statistically dependent observations
- Ivan Vrana, Mohamed Mahmoud El-Hefnawi, On the evaluation of properties of the sequential probability ratio test for statistically dependent observations
- Andrey Novikov, Optimal sequential multiple hypothesis tests
- Andrey Novikov, Optimal sequential procedures with Bayes decision rules