Some Variations of Perfect Graphs

Magda Dettlaff; Magdalena Lemańska; Gabriel Semanišin; Rita Zuazua

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 3, page 661-668
  • ISSN: 2083-5892

Abstract

top
We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)- perfect graphs describing the set of its forbidden induced subgraphs and providing the explicit characterisation of the structure of graphs belonging to this family.

How to cite

top

Magda Dettlaff, et al. "Some Variations of Perfect Graphs." Discussiones Mathematicae Graph Theory 36.3 (2016): 661-668. <http://eudml.org/doc/285594>.

@article{MagdaDettlaff2016,
abstract = {We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)- perfect graphs describing the set of its forbidden induced subgraphs and providing the explicit characterisation of the structure of graphs belonging to this family.},
author = {Magda Dettlaff, Magdalena Lemańska, Gabriel Semanišin, Rita Zuazua},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {k-path vertex cover; distance k-domination number; perfect graphs; -path vertex cover; distance -domination number},
language = {eng},
number = {3},
pages = {661-668},
title = {Some Variations of Perfect Graphs},
url = {http://eudml.org/doc/285594},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Magda Dettlaff
AU - Magdalena Lemańska
AU - Gabriel Semanišin
AU - Rita Zuazua
TI - Some Variations of Perfect Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 3
SP - 661
EP - 668
AB - We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)- perfect graphs describing the set of its forbidden induced subgraphs and providing the explicit characterisation of the structure of graphs belonging to this family.
LA - eng
KW - k-path vertex cover; distance k-domination number; perfect graphs; -path vertex cover; distance -domination number
UR - http://eudml.org/doc/285594
ER -

References

top
  1. [1] C. Berge, Färbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961) 114. 
  2. [2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Monographs on Discrete Math. Appl.) (SIAM, Philadelphia, 1999). doi:10.1137/1.9780898719796[Crossref] 
  3. [3] B. Brešar, F. Kardoš, J. Katrenič and G. Semanišin, Minimum k-path vertex cover , Discrete Appl. Math. 159 (2011) 1189-1195. doi:10.1016/j.dam.2011.04.008[Crossref][WoS] Zbl1223.05224
  4. [4] G.S. Domke, J.H. Hattingh and L.R. Markus, On weakly connected domination in graphs II, Discrete Math. 305 (2005) 112-122. doi:10.1016/j.disc.2005.10.006[Crossref] Zbl1078.05064
  5. [5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998). Zbl0890.05002
  6. [6] M.A. Henning, O.R. Oellermann and H.C. Swart, Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991) 11-18. Zbl0766.05040
  7. [7] M.A. Henning, O.R. Oellermann and H.C. Swart, Relationships between distance domination parameters, Math. Pannon. 5 (1994) 69-79. Zbl0801.05038
  8. [8] L. Volkmann, On graphs with equal domination and covering numbers, Discrete Appl. Math. 51 (1994) 211-217. doi:10.1016/0166-218X(94)90110-4[Crossref] 
  9. [9] I.E. Zverovich, Perfect-connected-dominant graphs, Discuss. Math. Graph Theory 23 (2003) 159-162. doi:10.7151/dmgt.1192[Crossref] Zbl1037.05038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.