Stability of commuting maps and Lie maps
J. Alaminos; J. Extremera; Š. Špenko; A. R. Villena
Studia Mathematica (2012)
- Volume: 213, Issue: 1, page 25-48
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topJ. Alaminos, et al. "Stability of commuting maps and Lie maps." Studia Mathematica 213.1 (2012): 25-48. <http://eudml.org/doc/285685>.
@article{J2012,
abstract = {Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.},
author = {J. Alaminos, J. Extremera, Š. Špenko, A. R. Villena},
journal = {Studia Mathematica},
keywords = {commuting map; Lie isomorphism; Lie derivation; ultraprime Banach algebra; functional identities},
language = {eng},
number = {1},
pages = {25-48},
title = {Stability of commuting maps and Lie maps},
url = {http://eudml.org/doc/285685},
volume = {213},
year = {2012},
}
TY - JOUR
AU - J. Alaminos
AU - J. Extremera
AU - Š. Špenko
AU - A. R. Villena
TI - Stability of commuting maps and Lie maps
JO - Studia Mathematica
PY - 2012
VL - 213
IS - 1
SP - 25
EP - 48
AB - Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.
LA - eng
KW - commuting map; Lie isomorphism; Lie derivation; ultraprime Banach algebra; functional identities
UR - http://eudml.org/doc/285685
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.