Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)
Marián Fabian; Sebastián Lajara
Studia Mathematica (2012)
- Volume: 209, Issue: 3, page 247-265
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMarián Fabian, and Sebastián Lajara. "Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)." Studia Mathematica 209.3 (2012): 247-265. <http://eudml.org/doc/285720>.
@article{MariánFabian2012,
abstract = {We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.},
author = {Marián Fabian, Sebastián Lajara},
journal = {Studia Mathematica},
keywords = {Lebesgue-Bochner space ; smooth norm; Orlicz-Bochner norm; reflexive subspaces of ; Fréchet smooth norm; uniformly smooth norm; uniformly Fréchet smooth norm},
language = {eng},
number = {3},
pages = {247-265},
title = {Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)},
url = {http://eudml.org/doc/285720},
volume = {209},
year = {2012},
}
TY - JOUR
AU - Marián Fabian
AU - Sebastián Lajara
TI - Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)
JO - Studia Mathematica
PY - 2012
VL - 209
IS - 3
SP - 247
EP - 265
AB - We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.
LA - eng
KW - Lebesgue-Bochner space ; smooth norm; Orlicz-Bochner norm; reflexive subspaces of ; Fréchet smooth norm; uniformly smooth norm; uniformly Fréchet smooth norm
UR - http://eudml.org/doc/285720
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.