Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)
Marián Fabian; Sebastián Lajara
Studia Mathematica (2012)
- Volume: 209, Issue: 3, page 247-265
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMarián Fabian, and Sebastián Lajara. "Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)." Studia Mathematica 209.3 (2012): 247-265. <http://eudml.org/doc/285720>.
@article{MariánFabian2012,
	abstract = {We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.},
	author = {Marián Fabian, Sebastián Lajara},
	journal = {Studia Mathematica},
	keywords = {Lebesgue-Bochner space ; smooth norm; Orlicz-Bochner norm; reflexive subspaces of ; Fréchet smooth norm; uniformly smooth norm; uniformly Fréchet smooth norm},
	language = {eng},
	number = {3},
	pages = {247-265},
	title = {Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)},
	url = {http://eudml.org/doc/285720},
	volume = {209},
	year = {2012},
}
TY  - JOUR
AU  - Marián Fabian
AU  - Sebastián Lajara
TI  - Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)
JO  - Studia Mathematica
PY  - 2012
VL  - 209
IS  - 3
SP  - 247
EP  - 265
AB  - We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.
LA  - eng
KW  - Lebesgue-Bochner space ; smooth norm; Orlicz-Bochner norm; reflexive subspaces of ; Fréchet smooth norm; uniformly smooth norm; uniformly Fréchet smooth norm
UR  - http://eudml.org/doc/285720
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 