A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators
Malabika Pramanik; Keith M. Rogers; Andreas Seeger
Studia Mathematica (2011)
- Volume: 202, Issue: 1, page 1-15
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMalabika Pramanik, Keith M. Rogers, and Andreas Seeger. "A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators." Studia Mathematica 202.1 (2011): 1-15. <http://eudml.org/doc/285781>.
@article{MalabikaPramanik2011,
abstract = {We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.},
author = {Malabika Pramanik, Keith M. Rogers, Andreas Seeger},
journal = {Studia Mathematica},
keywords = {regularity of integral operators; Radon transforms; singular integrals; Fourier integral operators; Triebel-Lizorkin spaces},
language = {eng},
number = {1},
pages = {1-15},
title = {A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators},
url = {http://eudml.org/doc/285781},
volume = {202},
year = {2011},
}
TY - JOUR
AU - Malabika Pramanik
AU - Keith M. Rogers
AU - Andreas Seeger
TI - A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators
JO - Studia Mathematica
PY - 2011
VL - 202
IS - 1
SP - 1
EP - 15
AB - We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.
LA - eng
KW - regularity of integral operators; Radon transforms; singular integrals; Fourier integral operators; Triebel-Lizorkin spaces
UR - http://eudml.org/doc/285781
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.