Embeddings of Besov spaces of logarithmic smoothness
Fernando Cobos; Óscar Domínguez
Studia Mathematica (2014)
- Volume: 223, Issue: 3, page 193-204
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFernando Cobos, and Óscar Domínguez. "Embeddings of Besov spaces of logarithmic smoothness." Studia Mathematica 223.3 (2014): 193-204. <http://eudml.org/doc/285788>.
@article{FernandoCobos2014,
abstract = {This paper deals with Besov spaces of logarithmic smoothness $B_\{p,r\}^\{0,b\}$ formed by periodic functions. We study embeddings of $B_\{p,r\}^\{0,b\}$ into Lorentz-Zygmund spaces $L_\{p,q\}(log L)_\{β\}$. Our techniques rely on the approximation structure of $B_\{p,r\}^\{0,b\}$, Nikol’skiĭ type inequalities, extrapolation properties of $L_\{p,q\}(log L)_\{β\}$ and interpolation.},
author = {Fernando Cobos, Óscar Domínguez},
journal = {Studia Mathematica},
keywords = {Besov spaces; logarithmic smoothness; Nikol’skiĭ inequality; approximation spaces; Lorentz-Zygmund spaces},
language = {eng},
number = {3},
pages = {193-204},
title = {Embeddings of Besov spaces of logarithmic smoothness},
url = {http://eudml.org/doc/285788},
volume = {223},
year = {2014},
}
TY - JOUR
AU - Fernando Cobos
AU - Óscar Domínguez
TI - Embeddings of Besov spaces of logarithmic smoothness
JO - Studia Mathematica
PY - 2014
VL - 223
IS - 3
SP - 193
EP - 204
AB - This paper deals with Besov spaces of logarithmic smoothness $B_{p,r}^{0,b}$ formed by periodic functions. We study embeddings of $B_{p,r}^{0,b}$ into Lorentz-Zygmund spaces $L_{p,q}(log L)_{β}$. Our techniques rely on the approximation structure of $B_{p,r}^{0,b}$, Nikol’skiĭ type inequalities, extrapolation properties of $L_{p,q}(log L)_{β}$ and interpolation.
LA - eng
KW - Besov spaces; logarithmic smoothness; Nikol’skiĭ inequality; approximation spaces; Lorentz-Zygmund spaces
UR - http://eudml.org/doc/285788
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.