spectral multipliers on the free group
Alessio Martini; Detlef Müller
Studia Mathematica (2013)
- Volume: 217, Issue: 1, page 41-55
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAlessio Martini, and Detlef Müller. "$L^{p}$ spectral multipliers on the free group $N_{3,2}$." Studia Mathematica 217.1 (2013): 41-55. <http://eudml.org/doc/285822>.
@article{AlessioMartini2013,
abstract = {Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group $N_\{3,2\}$ on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.},
author = {Alessio Martini, Detlef Müller},
journal = {Studia Mathematica},
keywords = {nilpotent Lie groups; spectral multipliers; sublaplacians; Mikhlin-Hörmander multipliers; singular integral operators},
language = {eng},
number = {1},
pages = {41-55},
title = {$L^\{p\}$ spectral multipliers on the free group $N_\{3,2\}$},
url = {http://eudml.org/doc/285822},
volume = {217},
year = {2013},
}
TY - JOUR
AU - Alessio Martini
AU - Detlef Müller
TI - $L^{p}$ spectral multipliers on the free group $N_{3,2}$
JO - Studia Mathematica
PY - 2013
VL - 217
IS - 1
SP - 41
EP - 55
AB - Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group $N_{3,2}$ on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.
LA - eng
KW - nilpotent Lie groups; spectral multipliers; sublaplacians; Mikhlin-Hörmander multipliers; singular integral operators
UR - http://eudml.org/doc/285822
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.