Various Bounds for Liar’s Domination Number
Abdollah Alimadadi; Doost Ali Mojdeh; Nader Jafari Rad
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 3, page 629-641
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAbdollah Alimadadi, Doost Ali Mojdeh, and Nader Jafari Rad. "Various Bounds for Liar’s Domination Number." Discussiones Mathematicae Graph Theory 36.3 (2016): 629-641. <http://eudml.org/doc/285861>.
@article{AbdollahAlimadadi2016,
abstract = {Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V (G) can be correctly identified as an intruder location under these restrictions. The minimum cardinality of a liar’s dominating set is called the liar’s domination number, and is denoted by γLR(G). In this paper, we present sharp bounds for the liar’s domination number in terms of the diameter, the girth and clique covering number of a graph. We present two Nordhaus-Gaddum type relations for γLR(G), and study liar’s dominating set sensitivity versus edge-connectivity. We also present various bounds for the liar’s domination component number, that is, the maximum number of components over all minimum liar’s dominating sets.},
author = {Abdollah Alimadadi, Doost Ali Mojdeh, Nader Jafari Rad},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {liar’s domination; diameter; regular graph; Nordhaus-Gaddum; liar's domination},
language = {eng},
number = {3},
pages = {629-641},
title = {Various Bounds for Liar’s Domination Number},
url = {http://eudml.org/doc/285861},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Abdollah Alimadadi
AU - Doost Ali Mojdeh
AU - Nader Jafari Rad
TI - Various Bounds for Liar’s Domination Number
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 3
SP - 629
EP - 641
AB - Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V (G) can be correctly identified as an intruder location under these restrictions. The minimum cardinality of a liar’s dominating set is called the liar’s domination number, and is denoted by γLR(G). In this paper, we present sharp bounds for the liar’s domination number in terms of the diameter, the girth and clique covering number of a graph. We present two Nordhaus-Gaddum type relations for γLR(G), and study liar’s dominating set sensitivity versus edge-connectivity. We also present various bounds for the liar’s domination component number, that is, the maximum number of components over all minimum liar’s dominating sets.
LA - eng
KW - liar’s domination; diameter; regular graph; Nordhaus-Gaddum; liar's domination
UR - http://eudml.org/doc/285861
ER -
References
top- [1] D. Auger, Induced paths in twin-free graphs, Electron. J. Combin. 15 #N17 (2008). Zbl1160.05316
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics 244 (Springer-Verlag, London, 2008).
- [3] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, Bocz Raton, 2004). Zbl0890.05001
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., New York, 1998). Zbl0883.00011
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graph (Marcel Dekker, Inc., New York, 1998). Zbl0890.05002
- [6] T.W. Haynes, P.J. Slater and C. Sterling, Liar’s domination in ladders, Congr. Numer. 212 (2012) 45-56.
- [7] I. Honkala, T. Laihonen and S. Ranto, On codes identifying sets of vertices in Hamming spaces, Des. Codes Cryptogr. 24 (2001) 193-204. doi:10.1023/A:1011256721935[Crossref] Zbl1008.94028
- [8] V. Junnila and T. Laihonen, Optimal identifying codes in cycles and paths, Graphs Combin. 28 (2012) 469-481. doi:10.1007/s00373-011-1058-6[Crossref] Zbl1256.05124
- [9] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599-611. doi:10.1109/18.661507[Crossref] Zbl1105.94342
- [10] M. Nikodem, False alarms in fault-tolerant dominating sets in graphs, Opuscula Math. 32 (2012) 751-760. doi:10.7494/OpMath.2012.32.4.751[Crossref] Zbl1259.05131
- [11] B.S. Panda and S. Paul, Hardness results and approximation algorithm for total liar’s domination in graphs, J. Comb. Optim. 27 (2014) 643-662. doi:10.1007/s10878-012-9542-3[WoS][Crossref] Zbl1297.90170
- [12] B.S. Panda and S. Paul, Liar’s domination in graphs: Complexity and algorithm, Discrete Appl. Math. 161 (2013) 1085-1092. doi:10.1016/j.dam.2012.12.011[Crossref] Zbl1263.05074
- [13] B.S. Panda and S. Paul, A linear time algorithm for liar’s domination problem in proper interval graphs, Inform. Process. Lett. 113 (2013) 815-822. doi:10.1016/j.ipl.2013.07.012[WoS][Crossref] Zbl1284.05308
- [14] M.L. Roden and P.J. Slater, Liar’s domination and the domination continuum, Congr. Numer. 190 (2008) 77-85. Zbl1181.05073
- [15] M.L. Roden and P.J. Slater, Liar’s domination in graphs, Discrete Math. 309 (2009) 5884-5890. doi:10.1016/j.disc.2008.07.019[Crossref] Zbl1211.05123
- [16] P.J. Slater, Liar’s domination, Networks 54 (2009) 70-74. doi:10.1002/net.20295[Crossref][WoS] Zbl1204.90061
- [17] J. Zhou, Z. Zhang, W. Wu and K. Xing, A greedy algorithm for the fault-tolerant connected dominating set in a general graph, J. Comb. Optim. 28 (2014) 310-319. doi:10.1007/s10878-013-9638-4[Crossref][WoS] Zbl1298.90122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.