On Path-Pairability in the Cartesian Product of Graphs
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 3, page 743-758
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (J. Wiley & Sons, New York, 2000). Zbl0963.05002
- [2] W.-S. Chiue and B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Appl. Math. Comput. 102 (1999) 129-137. doi:10.1016/S0096-3003(98)10041-3[WoS][Crossref]
- [3] L. Csaba, R.J. Faudree, A. Gyárfás, J. Lehel and R.H. Schelp, Networks communi- cating for each pairing of terminals, Networks 22 (1992) 615-626. doi:10.1002/net.3230220702[Crossref] Zbl0768.90022
- [4] R.J. Faudree, Properties in pairable graphs, New Zealand J. Math. 21 (1992) 91-106. Zbl0776.05058
- [5] R.J. Faudree, Some strong variations of connectivity, in: Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud. 1 (1993) 125-144. Zbl0791.05067
- [6] R.J. Faudree, A. Gyárfás and J. Lehel, Minimal path pairable graphs, Congr. Numer. 88 (1992) 111-128. Zbl0791.05058
- [7] R.J. Faudree, A. Gyárfás and J. Lehel, Three-regular path pairable graphs, Graphs Combin. 8 (1992) 45-52. doi:10.1007/BF01271707[Crossref] Zbl0768.05061
- [8] R.J. Faudree, A. Gyárfás and J. Lehel, Path-pairable graphs, J. Combin. Math. Combin. Comput. 29 (1999) 145-157. Zbl0921.05043
- [9] E. Kubicka, G. Kubicki and J. Lehel, Path-pairable property for complete grids, Combin. Graph Theory Algorithms 1 (1999) 577-586.
- [10] G. Mésáros, On linkedness in the Cartesian product of graphs, Period. Math. Hungar., to appear. doi:10.1007/s10998-016-0113-8[Crossref]
- [11] G. Mészáros, Note on the diameter of path-pairable graphs, Discrete Math. 337 (2014) 83-86. doi:10.1016/j.disc.2014.08.011[Crossref]
- [12] J. Xu and C. Yang, Connectivity of Cartesian product graphs, Discrete Math. 306 (2006) 159-165. doi:10.1016/j.disc.2005.11.010[Crossref]